C + +

langage

orienté objets

Version 2.3 (9/94)

S O M M A I R E

1

I. INTRODUCTION

A. HISTORIQUE
1

B. AVERTISSEMENT
1

C. PRÉSENTATION
1

II. C++ MEILLEUR QUE C
3

A. COMMENTAIRES
3

B. LES RÉFÉRENCES
3

C. L'OPÉRATEUR SCOPE '::'
4

D. LES FONCTIONS 'INLINE'
4

E. LA SURCHARGE DES FONCTIONS
4

F. VALEUR PAR DÉFAUT D'UN ARGUMENT
5

G. EDITION DES LIENS PLUS INTELLIGENTE
5

H. LA MÉMOIRE DYNAMIQUE
5

I. LES DÉCLARATIONS ET LE CODE
5

J. INITIALISATION DYNAMIQUE DES VARIABLES
6

K. LES UNIONS ANONYMES
6

III. C++ DIFFERENT DE C
7

A. DÉSACCORD SUR LES CONSTANTES
7

B. ATAVISME ANSI C
7

C. INTERFAÇAGE ENTRE MODULES C ET C++
7

IV. LES CLASSES D'OBJETS
8

A. DÉFINITIONS
8

B. LES CLASSES PUBLIQUES
8

C. LES CLASSES PRIVÉES
9

D. MASQUAGE ET IMBRICATIONS DES TYPES
10

V. LES MEMBRES DE LA CLASSE
11

A. L'OPÉRATEUR SCOPE '::'
11

B. L'OPÉRATEUR POINT '.'
11

C. L'ÉCRITURE D'UNE FONCTION MEMBRE
11

D. LES MEMBRES CONSTRUCTEURS
11

1. La déclaration d'objets
12

2. La conversion d' objets
12

3. Initialisation des objets
12

4. Les objets dynamiques
12

E. LES DESTRUCTEURS
13

F. LES MEMBRES STATIQUES
13

G. LES MEMBRES OPÉRATEURS
13

H. LES MEMBRES NEW ET DELETE
14

I. LES QUALIFIEURS DE FONCTIONS MEMBRES
15

J. LES POINTEURS DE MEMBRES
15

VI. LES AMIS DE LA CLASSE
16

VII. LES CLASSES DERIVEES
17

A. LA DÉRIVATION PUBLIQUE, HÉRITAGE
18

B. LA DÉRIVATION PRIVÉE
18

C. LES MEMBRES VIRTUELS
19

D. LES CONSTRUCTEURS
21

E. LES DESTRUCTEURS
21

F. LES CLASSES ABSTRAITES
22

VIII. LES EXTENSIONS
23

A. LA GÉNÉRICITÉ : TEMPLATE
23

B. EXCEPTIONS
23

IX. LES COMMANDEMENTS DU MAITRE
25

X. LA BIBLIOTHEQUE
26

XI. les BIBLIOTHEQUES OBJETS
27

A. BIBLIOTHEQUE PAR HERITAGE
27

1. Buts d'une bibliothèque PAR HERITAGE
27

2. Structure de la bibliothèque
27

B. BIBLIOTHEQUE TEMPLATE
30

C. CRITIQUES
30

XII. BIBLIOGRAPHIE
31

.Fin Table M.
I. INTRODUCTION

A. Historique

Le langage fut créé en 1980 par Bjarne STROUSTRUP (AT&T) pour bénéficier des avantages conceptuels du langage orienté objet SIMULA67 et de l'efficacité d'un compilateur C.

Cependant certaines syntaxes de C furent modifiées. La normalisation ANSI C a repris certaines de ces évolutions, rendant C++ presque compatible ascendant de C.

Le langage lui-même évolue sous l'impulsion d'AT&T. Les autres réalisations, reconnaissant sans doute les droits d'AT&T en matière de définition du langage, s'alignent sur celle-ci. La version 2.1 est soumise actuellement au comité ANSI pour normalisation.

La dernière version AT&T serait la 3.0. La majorité des autres compilateurs en sont à la 2.1, les autres à la 2.0.

B. Avertissement

Seules les extensions de C++ par rapport au C ANSI seront présentées. Tout lecteur peu familier avec ce langage peut lire au préalable le document de présentation du C ANSI.

De même le concept objet étant supposé connu, la lecture préalable du sujet sur la conception orientée objets est conseillée.

Les aspects périmés de la version 1.0 encore reconnus par compatibilité seront ignorés.

Les fonctions spécifiques de la version 2.1 seront marquées : (2.1).

Les fonctions spécifiques de la version 3.0 seront marquées (3.0).

C. Présentation

Le langage C++ est un langage C ANSI auquel la notion de classe d'objets est ajoutée. Le langage C ANSI étant d'ailleurs compilable à 99 % par un compilateur C++, et de toute façon on peut mélanger des modules C et C++ dans une même application.

Il existe trois langages objets réalisés souvent comme des pré processeurs générant du C :

SYMBOL 183 \f "Symbol" \s 10 \h
Eiffel dont la syntaxe n'a aucun rapport avec celle du C,

SYMBOL 183 \f "Symbol" \s 10 \h
Objective C dont la syntaxe est un mélange de C et SMALLTALK,

SYMBOL 183 \f "Symbol" \s 10 \h
C++ dont la syntaxe reste dans la ligne du C. (ANSI aurait pu l'intégrer totalement dans sa normalisation de C).

Actuellement, tous les systèmes cherchent leur langage objet considéré un peu comme la bouée salvatrice. Les avantages en sont indéniables mais il est trop tôt pour savoir si le concept révolutionnera la programmation comme le concept de structuration et de modularité le fit en son temps.

C++ a été choisi par ATT comme langage objet pour les machines UNIX système V version 4 qui unifie les familles UNIX système V, Berkeley et XENIX. Toutefois, le système d'exploitation lui-même reste écrit en C.

Certaines versions sont des préprocesseurs du langage C, ce qui le rend facilement portable sur de nombreuses chaînes de compilation mais pose quelques problèmes (collisions de noms de variable). De véritables compilateurs existent à présent (Zortek/turbo C++).

II. C++ MEILLEUR QUE C

Certaines améliorations hors concept objet n'ont pas été prises en compte par la norme C ANSI qui pourtant se rapproche de C++.

Même pour une programmation classique, C++ offre donc quelques avantages sur C.

A. Commentaires

/* C++ dispose de la même notation que C

 pour les commentaires sur plusieurs ligne */

// cette notation permet un commentaire sur le reste

// de la ligne.

B. Les références

La déclaration "NOM_TYPE& ALIAS = ANCIEN_NOM;" déclare une variable ALIAS équivalente à la variable ANCIEN_NOM.

"ALIAS = 4"; est équivalent à

"ANCIEN_NOM = 4";

Ceci permet de renommer localement des variables mais surtout un nouveau type de passage d'argument par rapport à C:

// VERSION C VERSION C++
// prototype déclaration de fonction pour appel
int fnc(int *ptetat); int fnc(int &etat);
// corps de la fonction
int fnc(int *ptetat) int fnc(int &etat)
{ /* référence indirecte */ { /* référence directe */
 *ptetat = 0; etat = 0;
} }

// exemple d'appel
 fnc(&status); fnc(status);

Précédé de l'opérateur '&', le paramètre formel "état" devient un équivalent du paramètre d'appel "status". Toute lecture ou écriture du paramètre formel est équivalente à la même opération sur le paramètre d'appel. Ce mode de passage est identique au mode 'VAR' du langage PASCAL.

C. L'opérateur scope '::'

int var;
// définition d'une variable globale
void fnc()
{ int var; // définition d'une variable locale
 var = 4; // initialisation de la variable locale
 ::var = 4; // modification de la variable globale
}
L'opérateur scope (visibilité) permet de préciser le contexte d'un identificateur.

D. Les fonctions 'inline'

// fichier "defraz.h"
inline void raz(int &var) // aucun code généré
{ var = 0;
}

// fichier utilisateur de la fonction raz
#include "defraz.h"
// récupération définition raz
. . .
raz(var1); // génère le code : var1 = 0
raz(var2); // génère le code : var2 = 0

Les fonctions préfixées par inline n'ont pas d'existence réelle ; leur code est généré à chaque appel, à l'endroit de l'appel et sans appel réel de fonction.

C'est une économie de temps (et une perte d'espace) qui doit rester réservée à des fonctions de très petite taille (une ligne ?).

E. La surcharge des fonctions

Deux fonctions peuvent porter le même nom si le type d'un de leurs arguments diffère, ex :

void print(int i);

void print(double r);

void print(int width, int i);

void print(int width, int digits, double r);

Le compilateur choisit la fonction réelle
 à appeler en fonction de l'analyse des arguments, ex :

print(0)

appellera print(int i);

print(0.0)
appellera print(double r);

F. Valeur par défaut d'un argument

Le prototype de fonction (déclaration de son format d'appel) peut comporter des valeurs par défaut, ex :

void fnc(int v1, int v2=0); // prototype d'appel
. . .
fnc(4,2);

// v2 est spécifié
fnc(4);

// appel fnc(4,0);

G. Edition des liens plus intelligente

La compilation enregistre dans l'objet généré non seulement le nom des fonctions mais les types de leurs arguments.

Une incohérence entre la définition et la procédure d'appel d'une fonction est donc détectée à l'édition des liens.

H. La mémoire dynamique

La gestion de la mémoire dynamique est un peu plus intelligente qu'en C :

nom_type *pt; // pointeur
pt = new nom_type; // allocation dynamique
delete pt; // libération mémoire
pt = new nom_type[10]; // allocation de tableau
delete [10]pt; // libération de tableau

L'opérateur new permet d'allouer dynamiquement une variable du type spécifié, la taille nécessaire allouée est automatiquement calculée. (Applicable aux tableaux)

L'opérateur delete détruit l'objet créé par new. Dans le cas d'un tableau, l'indication du nombre d'éléments est facultative.

Ces opérateurs utilisent les fonctions de bibliothèque :

SYMBOL 183 \f "Symbol" \s 10 \h
void* operator new(long),

SYMBOL 183 \f "Symbol" \s 10 \h
void operator delete(void* adresse),

SYMBOL 183 \f "Symbol" \s 10 \h
void operator delete(void* adresse, long taille).

Ils peuvent être surchargés.

I. Les déclarations et le code

En C++, les déclarations et le code d'une fonction sont mélangeables. Ceci facilite certaines règles de codage préconisées par STROUSTRUP :

SYMBOL 183 \f "Symbol" \s 10 \h
Une variable doit être déclarées le plus proche possible de sa zone d'utilisation.

SYMBOL 183 \f "Symbol" \s 10 \h
Une variable doit recevoir une valeur initiale lors de sa déclaration.

J. Initialisation dynamique des variables

type variable = expression;

Ce type de déclaration permet d'initialiser une variable. L'expression peut comporter des données seulement connues à l'exécution.

K. Les unions anonymes

En C++ une union
 ne porte pas obligatoirement de nom. Chaque champ devient référençable directement (nom_champs au lieu de nom_var.nom_champs).
Cette pratique est particulièrement utile dans le cas d'une union imbriquée dans une structure.

Les unions non imbriquées sont obligatoirement static
.

III. C++ DIFFERENT DE C

C ANSI et C++ 2.X sont très proches, il subsiste cependant quelques désaccords.

A. Désaccord sur les constantes

const type constante = valeur;

Pour C ANSI, const est un qualifieur sur une donnée statique qui ne pourra plus varier. Un composant en est le propriétaire et les utilisateurs peuvent y accéder en tant que donnée externe.

Pour C++ comme en PASCAL, const introduit une constante locale au fichier, pas forcément codée en mémoire et pouvant servir à dimensionner un tableau à sa déclaration.

Il existe cependant une syntaxe commune pour la déclaration de constante globale :

extern const type constante [= valeur];

B. Atavisme ANSI C

En C ANSI fnc(); est le prototype d'une fonction sans contrôle des types des arguments.

En C++ fnc(); est le prototype d'une fonction n'acceptant pas d'argument.

Il est préférable d'adopter les notations suivantes qui ont la même signification dans les deux langages :

SYMBOL 183 \f "Symbol" \s 10 \h
fnc(void); fonction sans argument,

SYMBOL 183 \f "Symbol" \s 10 \h
fnc(...); fonction sans contrôle d'argument.

C. Interfaçage entre modules C et C++

Les déclarations de fonctions C pourront prendre diverses formes dont celle-ci est recommandée :

extern"C" { // déclarations C

#include "fichier déclaratif de fonctions C"

}

IV. LES CLASSES D'OBJETS

A. Définitions

Le concept objet découle de l'analyse du monde réel. On cherche à identifier des objets et leurs caractéristiques (attributs).

On regroupe les objets dont les caractéristiques sont identiques dans une classe.

Les opérations sur les objets sont appelés des messages, exécutés par des méthodes
. En langage C++ attributs et méthodes sont des membres de la classe, ils définissent une classe d'objets.

Il est recommandé d'adopter la structure physique suivante pour la construction un objet :

// fichier "objet.h" // PARTIE DECLARATIVE DE L'OBJET
#define OBJET // pour éviter les doubles déclarations
//
// déclaration des objets importés à la déclaration
.
#ifndef IMPORTDI // pour éviter les doubles déclarations
#include "importdi.h" //importation objet IMPORTDI
#endif
.
 déclaration de la classe d'objets OBJET

// fichier "objet.cpp" // PARTIE CORPS DE L'OBJET
#include "objet.h" // inclure de la partie déclarative
//
// déclaration des objets importés dans le corps
.
#ifndef IMPORTCJ // pour éviter les doubles déclarations
#include "importcj.h" //importation objet IMPORTCJ
.
 déclaration de la classe d'objets OBJET
#ifndef IMPORTD1 // pour éviter les doubles déclarations
#include "importd1.h" //importation déclaration objet IMPORTD1
.
 corps des méthodes de la classe d'objets OBJET

B. Les classes publiques

Les classes dérivent de la notion de structure en C.

struct capteur // classe
{
long *adresse_coupleur; // adresse du coupleur physique
 long masque_significatif; // champs significatif
 void capteur(long adresse,long nombre_de_bits);
 long lire(); // lecture du capteur
};

La classe contient quatre membres, des données, et des opérations sur cette classe d'objet.

Un objet se déclare par :

capteur temp = { 0x4000, 0x3ff}; // un capteur particulier

Notez que contrairement au langage C, il n'est pas nécessaire de préfixer "capteur" par le mot-clefs struct.

La structure interne de temp est publique. Tout utilisateur peut écrire : temp.adresse_coupleur = 0x2000;

C. Les classes privées

class capteur
{
private:

 // facultatif

long *adresse_coupleur; // adresse du coupleur physique
protected:

long masque_significatif; // champs significatif
 void fnc_privee();
public:
 int donnee_publique;

capteur(long adresse,long nombre_de_bits=8);

capteur();

~capteur();
 long lire() { return *adresse_coupleur };
}
capteur temp;

Les membres sont distribués en trois sections, publique, protégée et privée.

Seules les fonctions membres de la classe capteur (capteur et lire) peuvent accéder aux membres privés ou protégés et écrire : temp.adresse_coupleur = 0x2000;

Les membres publics peuvent être librement utilisés.

Si le corps d'une fonction membre est précisé dans la déclaration de la classe, les appels à cette fonction seront générés inline. (ex : la fonction lire)

D. Masquage et imbrications des types

Le système des classes permet de "cacher" la structure interne des données. Les membres privés d'une classe permettent de protéger fonctions et données.

En imbricant les déclarations on peut ainsi protéger les types :

class capteur
{
 class classe_locale
 { . . .
 };
 typedef ... type_local;
 enum enumeration_locale { ... };
 . . .
}
capteur temp;

Les définitions locales de types ne sont utilisable que par les membres de la classe englobante, les classes imbriquées n'ont aucun privilège d'accès sur la classe englobante.

V. LES MEMBRES DE LA CLASSE

A. L'opérateur scope '::'

classe::nom // ceci permet de sélectionner le membre nom de la classe classe en cas d'ambiguïté.

B. L'opérateur point '.'

Les fonctions d'une classe s'utilisent en nommant l'objet destinataire : temp.lire();

C. L'écriture d'une fonction membre

long capteur::lire()
// retourne la valeur lue
{

return((this->adresse_coupleur) // lecture coupleur
 & this->masque_significatif); // masquage
}
Le nom d'une fonction membre est précédée de la classe propriétaire.

L'argument this implicitement défini (capteur *this) pointe sur l'objet destinataire du message (ici temp).

Donc *this référence l'objet temp, et

this->adresse_coupleur est équivalent à

temp.adresse_coupleur, accès au membre adresse_coupleur de l'objet temp.

Cette notation n'est pas nécessaire à l'intérieur d'une fonction membre ; un identificateur est par ordre décroissant de priorité :

SYMBOL 183 \f "Symbol" \s 10 \h
le nom d'une variable locale,

SYMBOL 183 \f "Symbol" \s 10 \h
le nom d'un membre de la même classe appliqué à l'objet this,

SYMBOL 183 \f "Symbol" \s 10 \h
le nom d'une variable ou d'une fonction globale.

L'exemple peut donc se simplifier en :

long capteur::lire()
// retourne la valeur lue
{

return(adresse_coupleur & masque_significatif);
}
D. Les membres constructeurs

Un objet comportant des membres privés ne peut être initialisé comme une structure, sa structure interne restant cachée.

L'opération est donc confiée à des membres constructeurs
 de cette classe d'objets. Ils portent le même nom que la classe. Dans l'exemple, la fonction 'capteur' est le membre constructeur de la classe capteur.

1. La déclaration d'objets

La déclaration d'un objet devient :

capteur temp(0x4000,10);

et il y a appel implicite de :

temp.capteur(0x4000,10);

Tous les objets statiques (globaux ou static) sont initialisés (par appel de constructeur) en début d'exécution. (dans l'ordre des déclarations pour les 'globaux', dans un ordre indéfini pour les 'static'.

Tous les objets automatiques (locaux aux fonctions et dynamiques) sont initialisés à chaque entrée de fonction dans l'ordre de leur déclaration.

S'il existe un constructeur, un objet ne peut plus être déclaré sans initialisation, à moins qu'il n'existe un constructeur sans argument (ici capteur()) automatiquement appelé.

2. La conversion d' objets

Dans une affectation ou un passage de paramètre dont le destinataire est un objet, ex :

temp = 4;

Le compilateur cherche un constructeur de l'objet (capteur) dont le type d'argument correspond au type de l'objet source (4 donc int) et appel le constructeur pour initialiser l'objet.

temp = 4; // provoque l'appel de temp.capteur(4,10);

3. Initialisation des objets

Une donnée de type composé (Une structure sans constructeur ou un tableau) peut être initialisée à la déclaration à l'aide d'une liste de valeurs.

S'il s'agit d'un type composé d'objets, ces valeurs ne sont pas directement celles des éléments mais les arguments des constructeurs, ex :

typobj tableau[] = { 2, 2.0, typobj(4,2) }; déclare un tableau de trois éléments de type typobj. Chacun sera initialisé par un constructeur différent :

SYMBOL 183 \f "Symbol" \s 10 \h
tableau[0].typobj(2); // typobj(int)

SYMBOL 183 \f "Symbol" \s 10 \h
tableau[1].typobj(2.0); // typobj(double)

SYMBOL 183 \f "Symbol" \s 10 \h
tableau[2].typobj(4,2); // typobj(int,int)

4. Les objets dynamiques

La réservation dynamique d'un objet (new nom_classe) provoque l'appel de son constructeur. Si celui-ci comporte des arguments, la syntaxe devient :

... new nom_classe(liste des arguments);

Les créations de tableaux sont possibles, ex :

new nom_classe[2] = { 0, 0.0};

Il y aura réservation de deux objets, et appel d'un constructeur avec en argument un entier pour le premier et d'un constructeur avec en argument un réel pour le second.

E. Les destructeurs

Un membre destructeur s'écrit ~NOM_DE_CLASSE, dans l'exemple ~capteur.

En fin de programme, chaque objet statique est détruit en appelant la fonction destructrice dans l'ordre inverse des destructions.

Tous les objets automatiques (locaux aux fonctions et dynamiques) sont détruits à chaque sortie de fonction dans l'ordre inverse de leur déclaration.

L'utilisation de l'opérateur delete provoque l'appel du destructeur avant la libération d'un objet. Pour la libération d'un tableau, l'indication de sa dimension est obligatoire pour que le destructeur puisse être appelé pour chaque élément du tableau.

F. Les membres statiques

class capteur
{
. . .
static nombre_capteurs;
public:
. . .
static effectif();
;
capteur temp;
capteur::nombre_capteurs = 0; // initialisation d'un static

Les membres static (donnée ou fonction) ne dépendent pas d'un objet particulier. Ils sont référençables en indiquant la classe propriétaire et non l'objet destinataire, ex :

nb = capteur::effectif(); // appel de fonction

Dans l'exemple la fonction effectif() permet de consulter un compteur commun d'objets.

G. Les membres opérateurs

Les opérateurs peuvent également être surchargés par des membres d'une classe, ex :

class matrice
{ double elements[3][3];
 public:
 matrice operator-(); // a = -b;
 matrice operator-(second:matrice); // a = b-second
 matrice operator()(int valeur);
 double operator[](int ligne);
 void operator ++(); // pré-incrémentation
 void operator ++(int); // post-incrémentation
 operator autre_type(); // convertisseur
 static matrice operator+(premier:matrice,
 second:matrice); // a = premier+second
};

matrice a,b,c;
double r;
autre_type at;
void fnc()
{ a = -b; // équivalent à a = b.operator-();
 a = b-c; // équivalent à a = b.operator-(c);
 a = b+c; // équivalent à a = matrice::operator+(b,c);
 r = a[0]; // équivalent à r = a.operator[0]
 r = a(0); // équivalent à r = a.operator(0)
 ++a; // équivalent à a.operator++();
 a++; // équivalent à a.operator++(0); (2.1)
 at = a; // équivalent à at = a.operator autre_type()
}
Un opérateur est redéfini en donnant pour nom à une fonction son symbole précédé du mot-clef operator.

Pour les opérateurs binaire, un membre static ne privilégiant pas une opérande par rapport à l'autre est préférable.

Un opérateur peut être surchargé par une fonction ordinaire n'appartenant à aucune classe, si la fonction utilise au moins un objet parmi ses arguments.

L'opérateur [] peut également être surchargé, ce qui permet par exemple de gérer une liste avec la même notation utilisateur qu'un tableau.

L'opérateur () peut aussi être surchargé.

L'opérateur autre_type est une fonction de conversion vers une autre classe ou un type standard.

H. Les membres new et delete

Les opérateurs :

SYMBOL 183 \f "Symbol" \s 10 \h
void *operator new (long taille);

SYMBOL 183 \f "Symbol" \s 10 \h
void operator delete (void *);

SYMBOL 183 \f "Symbol" \s 10 \h
void operator delete (void *, long);

peuvent être surchargés comme membres d'une classe. Les opérateur new et delete pour cette classe d'objets feront appel à ces versions spécifiques d'objets.

On peut ainsi avoir une gestion dynamique propre à un type d'objet.

I. Les qualifieurs de fonctions membres

Certains qualifieurs réservés jusqu'alors aux données s'appliquent aux fonctions membres :

nom_fonction(arguments) qualifier { corps fonction };

Les qualifieurs possibles sont :

SYMBOL 183 \f "Symbol" \s 10 \h
const : La fonction est garantie ne rien modifier de la structure interne de l'objet, c'est un sélecteur au sens conception orientée objets.

SYMBOL 183 \f "Symbol" \s 10 \h
volatile : La fonction est garantie pouvoir s'appliquer aux objets volatils.

J. Les pointeurs de membres

type_pointe nom_classe::nom_pointeur;
nom_pointeur = & nom_classe::nom_membre;
 nom_objet.*nom_pointeur = 4;
// équivalent à nom_objet.nom_membre = 4;

Ce type de pointeur mémorise un membre d'une classe, il est ensuite utilisable sur n'importe quel objet.

VI. LES AMIS DE LA CLASSE

Seuls les membres d'une classe peuvent en principe accéder à ses attributs. Cependant, des fonctions ou des classes étrangères peuvent le faire si elles sont déclarées amies.
class matrice
{ double elements[3][3];
 public:
 friend class mecanicien; // classe amie
 friend void fnc_debug(); // fonction amie
};

matrice a,b,c;
mecanicien::fnc()
{ a.element[0][0] = 0; // légal
}
fnc_debug()
{ a.element[0][0] = 0; // légal
}
VII. LES CLASSES DERIVEES

// fichier "capteur.h"
class capteur // classe
{
long *adresse_coupleur; // adresse du coupleur physique
 long masque_significatif; // champs significatif
public:
 void capteur(long adresse,long nombre_de_bits);
 long lire(); // lecture du capteur
};

// fichier "temperature.h"
class temperature // classe
{
 double valeur; // valeur de la température
public:
 double celsius(); // lecture du capteur
 double fahrenheit();
};

// fichier "capteur_temperature.h"
#include "temperature.h"
#include "capteur.h"
class capteur_temperature:capteur,public temperature
{
 int status; // membre supplémentaire
public:
 int lire_status(); // lecture du status
};

Une classe dérivant d'autres classes hérite des mêmes membres que ses parents. Elle peut définir des membres propres en supplément.

Un objet de la classe dérivée peut être utilisé partout ou un objet de la classe parent l'est (l'inverse est faux).

Les membres de la classe dérivée n'ont pas accès aux membres privés des classes parentes. Ils sont obligés comme tout le monde d'utiliser les méthodes de la classe parente.

Par défaut les membres publiques de la classe parente deviennent des membres privés de la classe dérivée.

Si l'héritage est déclaré public, les membres publiques de la classe parente restent publiques.

Pour affiner ces deux extrêmes, une nouvelle catégorie de membre est introduite, les membres protégés. Un membre protégé est traité comme un membre privé pour les utilisateurs. Simplement, lors d'une dérivation, les membres restent accessibles aux méthodes de la classe dérivée.

C'est la seule distinction entre les membres protégés et privés.

A. La dérivation publique, héritage

Ce type de dérivation correspond à l'héritage (simple ou multiple) de la conception orientée objets. Les objets de la classe enfant héritent des propriétés des objets parents, ces propriétés étant à disposition du public.

B. La dérivation privée

Ce type d'héritage permet de fabriquer un objet dérivé construit en sur-couche de l'objet de base.

La construction avec membres protégés, permet d'avoir des objets dérivés plus efficaces (accès direct à la structure de la couche inférieure) au prix d'une dépendance.

 L'utilisateur voit la classe dérivée de la même façon dans les deux cas.

C. Les membres virtuels

class forme

// type d'objet affichable
{
 point centre;
// position dans l'écran de l'objet
 couleur nuance; // couleur de l'objet
public:
 void deplace(point vers) { centre=vers; affiche(); }
 point position() { return centre; }
 virtual void pure()=0; // inexistant pour forme
 virtual void affiche();
 virtual void tourne(int degres);
};

class cercle:public forme
// la forme est connue
{
 int rayon;
 // dimension du cercle en pixels
public:
 virtual void pure();
 virtual void affiche();
 virtual void tourne(int degres);
};

class carre:public forme
// la forme est connue
{
 int cote;
 // dimension du cote en pixels
public:
 void pure();
 void affiche();
 void tourne(int degres);
};

cercle rond;
carre car;
void main()
{ rond.deplace(0);
 car.deplace(0);
}

La compatibilité des types dérivés vers les types parents conduit à exécuter des traitements sur des objets dont on ne connaît pas le type réel.

Ainsi le message deplace appliqué aux objets rond et car sera traité par le membre deplace de la classe parent forme.
deplace utilise affiche de la classe forme puisqu'il ne connaît pas le type réel de l'objet (this) alors qu'il existe des versions spécifiques d'affiche pour les cercles et les carrés.

Si la fonction affiche est déclarée virtuelle, tous les objets de la classe forme et de ses dérivés triangle et cercle sont associés à leur version de la fonction virtuelle.

Ainsi la fonction déplace appellera la fonction cercle::affiche pour l'objet rond et triangle::affiche pour l'objet tri.

Le suffixe =0 sur une fonction virtuelle (ex : pure) indique une fonction purement virtuelle qui n'existe pas dans la classe de base (forme).

D. Les constructeurs

Si une classe dérive d'une autre classe ou si elle contient des objets membres, l'écriture du constructeur prend une forme particulière :

class forme

// type d'objet affichable
{
 point centre;
// position dans l'écran de l'objet
 couleur nuance; // couleur de l'objet
public:
 . . .
 forme(int x,int y,couleur);
};

class ligne: public forme
{ point bout; // autre bout de la ligne
public:
 ligne(int x1,int y1,int x2,int y2,couleur c);
};

ligne::ligne(
 int x1,int y1,
 int x2,int y2,
 couleur c)
 :forme(x1,y1,c),bout(x2,y2)
{ // initialisation du reste des membres
}

Le constructeur de la classe ligne n'a pas accès aux membres de la classe forme dont il dérive, ni aux attributs du membre bout qu'il contient.

Entre la partie déclarative du constructeur, et le corps du constructeur, on doit spécifier l'initialisation des parents (en indiquant le nom des parents), puis l'initialisation des membres objets (en indiquant le nom des membres).

Les constructeurs associés seront appelés dans l'ordre de la déclaration de la classe.

Si une initialisation est absente, un constructeur sans argument doit exister et sera appelé.

La construction d'un objet comprend donc les étapes suivantes :

SYMBOL 183 \f "Symbol" \s 10 \h
réservation mémoire s'il s'agit d'un objet dynamique,

SYMBOL 183 \f "Symbol" \s 10 \h
appel des constructeurs des parents de l'objet,

SYMBOL 183 \f "Symbol" \s 10 \h
appel des constructeurs des membres de l'objet,

SYMBOL 183 \f "Symbol" \s 10 \h
exécution du corps du constructeur de l'objet.

E. Les destructeurs

La destruction d'un objet suit la logique inverse de sa construction :

SYMBOL 183 \f "Symbol" \s 10 \h
exécution du corps du destructeur de l'objet,

SYMBOL 183 \f "Symbol" \s 10 \h
appel des destructeurs des membres de l'objet,

SYMBOL 183 \f "Symbol" \s 10 \h
appel des destructeurs des parents de l'objet,

SYMBOL 183 \f "Symbol" \s 10 \h
libération mémoire s'il s'agit d'un objet dynamique.

F. Les classes abstraites

Une classe contenant au moins une fonction purement virtuelle est une classe abstraite. On ne peut réserver d'objets de ce type. C'est une structure définissant des propriétées héritées par les classes dérivées.

La classe dérivée est elle-même abstraite à moins de définir des fonctions réelles à la place des fonctions purement virtuelles.

C'est le cas en turbo C++ de la classe OBJECT qui définit l'ensemble des fonctions nécessaires à un objet sans en connaître la structure.

Toutes les classes LISTE, TABLE, etc, utilise ces objets et sont donc capable de travailler sur n'importe quel type utilisateur héritant de la classe OBJECT.

Il doit cependant écrire toutes les fonctions purement virtuelles définies dans OBJECT.

Une classe abstraite offre un certain nombre de services. Toute classe qui en dérive peut bénéficier de ces services à condition d'écrire les fonctions virtuelles exigées par la classe parent.

scénario possible :

1
 invocation d'une fonction héritée,

2
 la fonction héritée utilise une fonction purement virtuelle,

3
 la fonction réalisée de la classe dérivée est exécutée à la place de la fonction purement virtuelle

VIII. LES EXTENSIONS

Le document de base soumit actuellement à normalisation propose deux extensions :

SYMBOL 183 \f "Symbol" \s 10 \h
la généricité,

SYMBOL 183 \f "Symbol" \s 10 \h
les exceptions

Il est à noter que ces fonctions sont les seules existante dans ADA
et absentes de C++, avec le traitement du temps réel. Ces extensions ont été réalisées par la version 3.0 d'ATT, sur laquelle je sais seulement qu'elle intègre la généricité.

Le compilateur BORLAND C++ 3.0 les intègrerait également. Le compilateur MICROSOFT n'intègre que les exceptions dans sa version 7.

A. La généricité : template

template est un nouveau mot réserver pour définir une classe générique :

template<class T,...> class vector

{ T* v;

 int sz;

public:

 vector(int); // constructeur

 T& operator[](int);

 T& elem(int i) { return v[i] };

}

Une classe template (vector) est paramétrée par des classes (T), des expressions constantes, des adresses d'objets ou de fonctions ou des membres de classes. La définition de ces paramètres est inconnue lors de la compilation de la définition de la classe template, mais ils peuvent être librement utilisés dans cette classe.

La valeur des paramètres est spécifiée lors de la déclaration de variables ou d'une définition de synonyme de type :

vector<int> v1(20); // vecteur d'entiers

vector<complex> v2(30); // vecteur de complexes

typedef vector<complex> cec; // définition de type

Le concept des paquetages générique ADA est moins souple, puisqu'il exige une connaissance des opérations disponibles sur le type donné en paramètre lors de la définition du paquetage. Toutefois cette connaissance facilite les diagnostiques très tôt alors qu'en C++ l'absence d'une fonction nécessaire ne pourra être détectée qu'à la déclaration du premier objet.

B. Exceptions

Les exceptions concernent le traitement des erreurs. Ces traitements sont à spécifier dans une fonction suivant la syntaxe :

void f()

{ // traitement préalable

 try // début de zone de code à surveiller

 {

 ... // zone de code à surveiller

 } // fin de la zone à surveiller

 catch(type_exception_1 argument)

 { // traitement si exception de type type_exception_1

 }

 catch(type_exception_2 argument)

 { // traitement si exception de type type_exception_2

 }

 catch(type_exception_N argument)

 { // traitement si exception de type type_exception_N

 }
 ... // suite du traitement

}

Pendant toute la durée de l'exécution de la zone à surveiller une exception peut être déclenchée par l'appel :

...
 throw expression_de_type_i
 ...

Lors du déclenchement de l'exception, le programme remonte jusqu'au plus proche bloc try englobant, suivi d'une clause catch dont le type d'argument est compatible de l'expression spécifiée.

Ce mécanisme est comparable à celui du langage ADA qui par contre :

SYMBOL 183 \f "Symbol" \s 5 \h
définissait des exceptions par défaut non déclenchées explicitement,

SYMBOL 183 \f "Symbol" \s 5 \h
ne permettait pas la transmission de paramètre au traitement d'exception.

C. AUTRES EXTENSIONS

D'autres extensions seraient incorporées à la normes :

· Allocation dynamique.

· Run time type intégration : typage d'un objet à sa déclaration

· Namespaces : gestion des conflits entre les classes de même nom.

IX. LES COMMANDEMENTS DU MAITRE

L'auteur du langage indique trois idées directrices :

SYMBOL 183 \f "Symbol" \s 10 \h
Si vous pensez à "ça" comme à une idée séparée, faites-en une classe.

SYMBOL 183 \f "Symbol" \s 10 \h
Si vous pensez à "ça" comme à une entité séparée, faites-en un objet.

SYMBOL 183 \f "Symbol" \s 10 \h
Si deux classes ont quelque chose de significatif en commun, factorisez le en tant que classe parent.

et sept règles par ordre de priorité décroissante :

SYMBOL 183 \f "Symbol" \s 10 \h
N'utilisez pas de donnée globale.

SYMBOL 183 \f "Symbol" \s 10 \h
N'utilisez pas de fonctions en dehors des classes.

SYMBOL 183 \f "Symbol" \s 10 \h
N'utilisez pas de données membres publiques.

SYMBOL 183 \f "Symbol" \s 10 \h
N'utilisez pas de friend.

SYMBOL 183 \f "Symbol" \s 10 \h
N'accéder pas directement aux membres d'un objet.

SYMBOL 183 \f "Symbol" \s 10 \h
Ne paramétrez pas une classe avec un champs type, dérivez la classe avec des fonctions virtuelles pour tenir compte des spécificités dans les traitements communs.

X. LA BIBLIOTHEQUE

Pour l'essentiel la bibliothèque standard C++ est identique à la bibliothèque C. Cependant une autre forme d'entrée sortie est proposée, la bibliothèque définie dans le fichier <stream.h>.

Ce fichier contient la définition d'un certain nombre de classes d'objets qui se substituent au type de variables fichiers FILE du C :

SYMBOL 183 \f "Symbol" \s 10 \h
ostream : classe des stream en sortie,

SYMBOL 183 \f "Symbol" \s 10 \h
istream : classe des stream en entrée,

SYMBOL 183 \f "Symbol" \s 10 \h
streambuff : classe des stream bufferisés

Un objet stream est déterminé lors de sa construction :

SYMBOL 183 \f "Symbol" \s 10 \h
un fichier bufferisé (streambuf)

SYMBOL 183 \f "Symbol" \s 10 \h
un fichier non bufferisé (int)

SYMBOL 183 \f "Symbol" \s 10 \h
un fichier mémoire (taille, tampon)

ex :

class ostream
{
// définition propre au compilateur
public:
 ostream& operator<<(char *);
 ostream& operator<<(int i) { return *this<<long(i);}
 ostream& operator<<(long);
 ostream& operator<<(double);
};

ostream fichier;
. . .
 fichier << i << r << "chaîne";

Ces fichiers utilisent les opérateurs '<<' en écriture et '>>' en lecture. Ces opérateurs réalisent l'écriture ou la lecture demandée et donnent en argument retour le fichier sur lequel s'applique l'opération.(fichier << i donne fichier)

On peut donc cascader les données envoyées ou lues sur le fichier.

D'autre part les compilateurs sont généralement livrés avec une bibliothèque non standard de classes.

XI. les BIBLIOTHEQUES OBJETS

BORLAND C++ intègre trois bibliothèques objets :

SYMBOL 183 \f "Symbol" \s 5 \h
bibliothèque généraliste intégrant tous les objets classiques (pile, dictionnaire...)

SYMBOL 183 \f "Symbol" \s 5 \h
version CONTAINER/HERITAGE : basée sur une hierarchie d'objets

SYMBOL 183 \f "Symbol" \s 5 \h
version BI : utilise les templates

SYMBOL 183 \f "Symbol" \s 5 \h
TURBO VISION : système à menu et fenêtré en mode texte sous DOS

SYMBOL 183 \f "Symbol" \s 5 \h
OBJECT WINDOWS : système à menu et fenêtré en mode graphique sous WINDOWS

A. BIBLIOTHEQUE PAR HERITAGE

Ce type de bibliothèque propose un certain nombre de services, mais il faut que l'objet qui désire les utiliser réalise un certain nombre d'opérations de base imposé par l'héritage de classes abstraites. C'est le seul type de bibliothèque possible avant la version 3.0.

1. Buts d'une bibliothèque PAR HERITAGE

La philosophie objet prétend réaliser un modèle du monde réel en agglomérant un ensemble d'objet dialoguant librement entre eux. L'idéal étant qu'il soit toujours possible d'envoyer un message à un objet, sachant qu'il se débrouillera avec.

Dans la pratique une bibliothèque se construit comme une langue. Il est nécessaire de définir un minimum de verbes (message) qui sera applicable sur tout nom (objet).

2. Structure de la bibliothèque

Chaque classe ou groupe de classes indissociables de classes constitue un composant logiciel. Les classes du composant nom sont définies dans un fichier interface nom.h et réalisées dans le fichier corps nom.cpp.

Chaque interface définit la macro __NOM_H.

Chaque fichier (interface ou corps) qui utilise les services d'un autre composant marque sa dépendance par la séquence :

#ifndef __NOM_H

#include "nom.h"

#endif

Une bibliothèque est batie sur une arborescence de classes abstraites, ex :

Chaque classe de l'application ou de la bibliothèque dérive d'une de ces classes.

Chaque classe abstraite comporte deux catégories de fonctions :

SYMBOL 183 \f "Symbol" \s 10 \h
les fonctions réalisés, services disponibles pour tout objet dérivé sans avoir à écrire la moindre ligne,

SYMBOL 183 \f "Symbol" \s 10 \h
les fonctions à réaliser (purement virtuelles) pour avoir le droit de dériver d'un de ces objets.

Ensuite tous les autres objets sont des réalisations de ces classes :

B. BIBLIOTHEQUE TEMPLATE

Ce type de bibliothèque possible depuis la version 3.0 n'impose pas aux objets de dériver d'une classe de base. N'importe quel objet peut en bénéficier. C'est à l'instanciation d'un objet que l'on pourra s'apercevoir de l'absence de fonctions nécessaires. A partir de la version 4.0, c'est la seule version supportée officiellement.

C. CRITIQUES

Certains choix sont à mon sens discutables :

SYMBOL 183 \f "Symbol" \s 10 \h
j'estime moins lisible les mots concaténé, même avec l'usage des majuscules, je préfère l'usage du caractère '_'

SYMBOL 183 \f "Symbol" \s 10 \h
il aurait sans doute été possible de fusionner les numéros d'identification de classe et la variable protégeant l'inclusion multiple,

SYMBOL 183 \f "Symbol" \s 10 \h
les noms de fonction ne sont pas assez homogènes, voir les fonctions de DoubleListe et Dequeue qui sont en fait des classes similaires,

SYMBOL 183 \f "Symbol" \s 10 \h
les prototypes de fonction dans les fichiers interface (.h) devraient spécifier les noms des paramètres.

XII. BIBLIOGRAPHIE

The annotated C++ reference manual de ELLIS & STROUSTRUP chez Addison-Wesley Publishing Company sur la version 2.1 du langage mais pour amateur éclairé seulement.

Tout ouvrage portant sur la version 2.0 ou au delà du langage, ou sur turbo c++ peut convenir.

Les autres références ont été utilisées pour cette synthèse mais ils sont à présent dépassés par d'autres ouvrages :

The C++ programming language de Bjarne STROUSTRUP chez Addison-Wesley Publishing Company. La référence de l'auteur du langage, clair et rigoureux mais ne traite que la version 1.0 du langage.

The Waite Group's C++ Programming de John BERRY chez Howard W. SAMS & COMPANY (version 1.1 du langage)

Using C++ de Bruce ECKEL chez Osborne Mc Graw-Hill, très moyen mais couvrant la version 2.0 du langage.

An Introduction to Object-Oriented Programming and C++ de Richard S WIENER et Lewis J PINSON, expliquant peu le langage mais donnant de nombreux exemples.

� avé les accents Mr L.P.

� La "meilleure" fonction est choisie : Elle doit être au moins aussi bonne sur tous les arguments que ses concurentes, et strictement meilleure sur un argument.

Critères sur un argument :

- arguments identique,

- conversion vers les types int, double,

- conversion standard,

- conversion utilisateur,

- type de paramètre non spécifié.

� Une union en C est une collection de données de types différents situées à la même adresse. Sa taille est égale à la taille maximale de ses composants.

� En C ces variables résident en mémoire statiquement. Sans préfixe elles sont globales et accessibles depuis les autres fichiers, préfixées par static, elles restent locales au fichier

� Plusieurs méthodes peuvent être nécessaire pour traiter un type de message, suivant les combinaisons possibles d'arguments.

� Le corps des fonctions 'inline' doit être écrit dans cette partie déclarative.

� Cette notation est la même en C pour accéder au champs d'une structure.

� A ne pas confondre avec le type de message constructeur de la conception orientée objet qui appelle ainsi les messages qui modifient un objet. Un constructeur C++ est plus que cela, il l'initialise à la création.

_840861315

_840861323

