Conception orientée objets

Conception orientée objets

la

CONCEPTION
ORIENTEE OBJETS

pour C++

1.1 07/96

.Début Table M.

S O M M A I R E

1

I. INTRODUCTION

II. PROBLEME DU LOGICIEL
2

III. LES FACTEURS DE QUALITE
3

IV. PRINCIPES DE LA CONCEPTION ORIENTEE OBJETS
4

A. STRUCTURE D'UN PROGRAMME OBJET
4

1. Les classes d'objets
5

2. L'objet
5

3. Les messages
5

B. STRUCTURE D'UN OBJET
5

1. Les attributs
6

2. Les méthodes
6

C. CONCEPTION
6

1. Identifier les objets
6

2. Identifier les classes et les liens entre classes
7

3. Identifier les messages
7

a) Identifier les messages reçus
7

b) Identifier les messages émis
7

4. Etablir la visibilité
7

5. Etablir les interfaces
7

6. Réaliser les objets
7

D. LIAISON ENTRE LA SPÉCIFICATION ET LA CONCEPTION
8

1. Spécification textuelle
8

2. Spécification SADT
8

3. Spécification SART
8

4. Spécification par modèle entité/association
8

5. Spécification orientée objets
8

V. LES LANGAGES ORIENTES OBJET
9

A. L'ÈRE PRÉ-OBJET
9

B. SIMULA L'ANCÊTRE
9

C. SMALLTALK LA RÉFÉRENCE
9

D. EIFFEL UN AUTRE LANGAGE OBJET
11

E. LES LANGAGES DÉRIVÉS DE LISP
11

F. LES LANGAGES DÉRIVÉS DE C ET PASCAL
12

VI. METHODES ET OUTILS
14

A. LA CONCEPTION INCREMENTALE
14

B. LA MÉTHODE OOSD
14

C. LES METHODES OOA/OOD SHLAER & MELLOR
16

D. LA METHODE OMT
16

1. LE MODELE OBJETS
17

2. MODELE DYNAMIQUE
18

3. Le modèle fonctionnel
19

4. Exemple de génération de code
19

E. LA METHODE CLASSE RELATION
20

VII. COMPARATIF et CONCLUSION
22

VIII. ANNEXES
24

A. BIBLIOGRAPHIE
24

.Fin Table M.
1. INTRODUCTION

L' objet est le maître mot ac​tuel. L' architecture structurée vient à peine de rallier les derniers irréductibles que déjà un autre concept étrange vient lui contester sa suprématie.

Mais ces deux méthodes sont-elles réellement en opposition ? Les objets représentent-ils une mode ou offrent-ils de réels avantages ? Sont-ils applicable au domaine temps réel ?

Pour répondre à ces questions, nous adopterons la démarche suivante:

SYMBOL 183 \f "Symbol" \s 12 \h
Analyse du problème actuel.

SYMBOL 183 \f "Symbol" \s 12 \h
Définition des critères recherchés.

SYMBOL 183 \f "Symbol" \s 12 \h
Présentation de la démarche proposée par cette mé​thode.

SYMBOL 183 \f "Symbol" \s 12 \h
Comparaison entre les méthodes et satisfaction aux critères définis.

2. PROBLEME DU LOGICIEL

Les problèmes existent depuis longtemps :

SYMBOL 183 \f "Symbol" \s 12 \h
Inadéquation : Le logiciel ne répond pas aux besoins, soit parce que ceux-ci sont mal définis, soit parce que la réa​lisation n'est pas conforme.

SYMBOL 183 \f "Symbol" \s 12 \h
Manque de Fiabilité : Le logiciel tombe souvent en panne.

Ce qui amplifie encore les faiblesses dans le domaine de :

SYMBOL 183 \f "Symbol" \s 12 \h
La modifiabilité, et l'extensibilité : Une petite correction ou ex​tension entraîne une importante modification.

SYMBOL 183 \f "Symbol" \s 12 \h
La maintenance.

Tout ceci avec une exploitation souvent incomplète des ressources de développement, et donc un manque de maîtrise des coûts et des délais.

Ajoutons que

SYMBOL 183 \f "Symbol" \s 12 \h
le faible coefficient de réutilisation,

SYMBOL 183 \f "Symbol" \s 12 \h
la difficulté des portages, (multiplicité des langages)

rendent cet investissement peu récupérable.

Mais avec l'inversion de l'importance relative des coûts de développe​ment matériel/logiciel dans un système, le problème est devenu économique et les efforts se sont multi​pliés :

SYMBOL 183 \f "Symbol" \s 12 \h
Formalisation des procédures de définition (adéqua​tion).

SYMBOL 183 \f "Symbol" \s 12 \h
Formalisation des procédures de développement (maî​trise des coûts, des délais, gestion des ressources)

SYMBOL 183 \f "Symbol" \s 12 \h
Définition pour les besoins de la défense américaine d'un lan​gage unique ADA (réutilisabilité).

SYMBOL 183 \f "Symbol" \s 12 \h
Méthodes de conception réduisant les défauts cités.

SYMBOL 183 \f "Symbol" \s 12 \h
Définition d'extension de langages classiques.

3. LES FACTEURS DE QUALITE

Définition des facteurs recherchés:

SYMBOL 183 \f "Symbol" \s 12 \h
MODIFIABILITE : Facilité avec laquelle le système peut être adapté lors de modifications des spécifications.

SYMBOL 183 \f "Symbol" \s 12 \h
EXTENSIBILITE : Facilité avec laquelle le logiciel peut être adapté lors d'une extension des spécifications.

SYMBOL 183 \f "Symbol" \s 12 \h
MAINTENABILITE : Facilité avec laquelle on détecte, localise et corrige les anomalies du logiciel.

SYMBOL 183 \f "Symbol" \s 12 \h
FIABILITE : Aptitude d'un logiciel à accomplir sans défaillance chaque fonction spécifiée, dans des conditions d'utilisations données pendant un temps déterminé.

SYMBOL 183 \f "Symbol" \s 12 \h
ROBUSTESSE : Aptitude d'un logiciel à maîtriser les conditions anormales de fonctionnement, à limiter les défauts à la partie concernée sans perturber les autres fonctions

SYMBOL 183 \f "Symbol" \s 12 \h
REUTILISABILITE : Aptitude du logiciel à être réuti​lisé, en tout ou en partie, dans d'autres applications.

SYMBOL 183 \f "Symbol" \s 12 \h
TESTABILITE : Facilite avec laquelle le logiciel peut être testé.

Définition des propriétés pouvant favoriser ces fac​teurs :

SYMBOL 183 \f "Symbol" \s 12 \h
FAIBLE COUPLAGE : Nombre faible d'interconnexions entre les modules.

SYMBOL 183 \f "Symbol" \s 12 \h
FORTE COHESION : Nombre important d'interconnexions entre les éléments d'un module.

SYMBOL 183 \f "Symbol" \s 12 \h
BONNE DECOMPOSABILITE : Facilité à décomposer les éléments complexes en composants pour diviser le travail.

SYMBOL 183 \f "Symbol" \s 12 \h
BONNE COMPOSABILITE : Facilité de combinaison des mo​dules à se combiner différemment dans la création d'autres sys​tèmes.

SYMBOL 183 \f "Symbol" \s 12 \h
BONNE COMPREHENSIBILITE : Compréhension des modules indé​pendamment de leur environnement

SYMBOL 183 \f "Symbol" \s 12 \h
CONTINUITE MODULAIRE : Un petit changement des spéci​fications n'entraîne qu'un petit changement de l'architecture du logiciel.

SYMBOL 183 \f "Symbol" \s 12 \h
PROTECTION MODULAIRE : L'effet d'une erreur (excep​tion) est limité au module ou elle est soulevée.

4. PRINCIPES DE LA CONCEPTION ORIENTEE OBJETS

L' effort de formalisation des phases du cycle de développement conduit les concepteurs de méthodes à proposer des modèles de représenta​tion. Ces modèles combinent trois axes principaux d'analyse : l'axe fonction​nel, l'axe dynamique et l'axe des données auquel il faut ajouter l'axe archi​tecture physique en phase de conception.

Le modèle structuré privilégie l'axe fonctionnel tandis que le modèle objet unifie les axes fonctionnels et données. Ces modèles sont applicables avec quelques adaptations aux phases de spécification ou conception. En effet la spécification vise la description non ambiguë de ce que fait un système (le quoi), tandis que la conception vise la description de la réalisa​tion du système (le comment), mais toutes deux peuvent utiliser le modèle objet pour cette description.

Le concept objet que nous allons présenter est dont également utilisé en spécification orientée objets, mais avec une démarche bien sûr différente.

4.1 Structure d'un programme objet

Un programme objet est constitué d' objets qui interagissent entre eux, par l'échange de mes​sages.

4.1.1 Les classes d'objets

Les classes définissent un type d'objet. L'utilisateur a la connaissance du nom de l'objet et des messages qu'il peut lui envoyer.

4.1.2 L'objet

Chaque objet est obtenu par instanciation de la classe, tout comme on déclare une variable d'un certain type, et il est accessible par son nom. Mais un objet est autonome, il gère sa structure interne de données dont l'utilisateur n'a pas connais​sance, et le traitement des messages qu'il reçoit.

4.1.3 Les messages

Les objets communiquent entre eux par des messages. Un objet en​voyant un message indique l'objet destinataire, le sé​lecteur (nom du mes​sage) et les arguments du message.

4.2 Structure d'un objet

Un objet est défini extérieurement (interface) par son nom et sa classe et les messages qu'il peut recevoir (la classe peut contenir un seul objet)

La structure interne de l'objet non visible de l'extérieur comprend :

4.2.1 Les attributs

Les attributs sont des données permettant de modéliser un objet. Par exemple, la couleur et la cylindrée pour une voi​ture.

4.2.2 Les méthodes

Les méthodes sont les sous-programmes qui vont traiter les messages. Il peut y avoir plusieurs méthodes par message, chacune traitant une confi​guration particulière d'arguments.

4.3 Conception

La démarche de conception comprend cinq étapes :

4.3.1 Identifier les objets

Il faut identifier les objets et leurs attributs. Pour cela choisir les objets du monde réel à travers l'analyse des spécifications.

Il ne s'agit pas de réaliser un modèle exhaustif de la réalité mais d'en faire une abstraction pour le domaine d'utilisation souhaité. Par exemple, les attributs position du volant et vitesse engagée d'une voiture sont de bons attributs pour un système de conduite, et kilométrage et niveau d'huile pour un système d'entretien.

On définira les valeurs associées des attributs. (Ex: état marche/arrêt).

Les objets peuvent ensuite être groupés en classes d'objets. On peut aussi regrouper les affinités pour donner naissance à des objets plus généraux. (Ex la classe des polygones pour la classe des rectangles)

4.3.2 Identifier les classes et les liens entre classes

Les communautés entre objets peuvent permette d'identifer les classes. Les communautés entre classes peuvent permettre d'identifier des classes partagées dont elles hériteraient des propriétés.

4.3.3 Identifier les messages

Cette phase consiste à établir deux listes construites plus ou moins en parallèle.

4.3.3.1 Identifier les messages reçus

Ce sont les opérations sur les objets qui seront réali​sés lors de l'implémentation. On considère trois types de messages :

SYMBOL 183 \f "Symbol" \s 12 \h
Les constructeurs : l'appel d'un constructeur peut modifier l'état de l'objet.

SYMBOL 183 \f "Symbol" \s 12 \h
Les sélecteurs : ils permettent d'obtenir des informations sur l'état de l'objet mais ne modifient pas son état.

SYMBOL 183 \f "Symbol" \s 12 \h
Les itérateurs : permettent de visiter l'ensemble des objets d'une classe, par exemple pour imprimer tous les objets d'un arbre, ou pour effectuer une recherche.

4.3.3.2 Identifier les messages émis

Ce sont les opérations utilisées sur les autres objets. Cette liste sert surtout à compléter la première et donne une première idée des liens entre objets.

4.3.4 Etablir la visibilité

Il faut établir les relations de visibilité entre les objets. Un objet qui envoie des messages à un autre objet a vue sur lui.

4.3.5 Etablir les interfaces

Il faut ici définir les différentes combinaisons pos​sibles d'arguments pour chaque message traité par un objet.

Chaque combinaison correspondra à la définition de l'interface de la méthode traitant ce type d'appel.

4.3.6 Réaliser les objets

Cette phase correspond à la réalisation de chaque objet (conception détaillée + codage)

4.4 Liaison entre la spécification et la conception

En fonction du type de spécification, il existe quelques règles de bon sens facilitant l'application de la dé​marche.

4.4.1 Spécification textuelle

Il faut d'abord lire la spécification en établissant des listes. Les noms correspondent généralement à des objets, les verbes à des messages, les adjectifs à des attributs ou des valeurs d'attribut.

Eliminer ensuite les synonymes, les objets en dehors du système à concevoir. Une fois ce premier niveau de formalisa​tion, le reste de la dé​marche est identique.

4.4.2 Spécification SADT

Les flots de données d'entrée ou de sortie sont souvent des objets, les données de contrôle également à l'exception des déclencheurs. Les méca​nismes ne sont généralement pas de bons objets. Les boites des datagrammes correspondent très souvent à des objets. Les boîtes des actigrammes constituent les messages.

4.4.3 Spécification SART

Les flots de données et les réservoirs d'information sont souvent des objets ou des attributs d'objet.

Les processus fonctionnels (bulles) et les flots de contrôle des mes​sages. La CSPEC décrit le fonctionnement dyna​mique d'un objet en fonction des messages.

4.4.4 Spécification par modèle entité/association

Ce modèle de spécification est orienté données, Les en​tités correspon​dent donc à des objets, et les attributs des en​tités aux attributs des objets.

Les associations correspondent en majorité à des mes​sages si elles peuvent être intégrées aux entités, parfois à des objets si elles recèlent des informations non reliables aux objets.

4.4.5 Spécification orientée objets

Certaines méthodes de spécification orientée objet commencent à émerger. L'outil de spécification SA/RT TEAMWORK propose de réaliser avec les mêmes outils une spécification orientée objets, mais il est encore trop tôt pour en évaluer l'impact.

5. LES LANGAGES ORIENTES OBJET

5.1 L'ère pré-objet

Certains travaux préalables comportaient des éléments repris dans la conception orientée objet :

SYMBOL 183 \f "Symbol" \s 12 \h
Modularité (D.L.PARNAS 1972)

SYMBOL 183 \f "Symbol" \s 12 \h
Type abstrait de données (B.LISKOV/J.GUTTAG 1975)

SYMBOL 183 \f "Symbol" \s 12 \h
Modèle ENTITE/ASSOCIATION (CHEN)

Mais les concepts sont nés en même temps que les langages les sup​portant.

5.2 SIMULA l'ancêtre

Le langage SIMULA (DAHL & NYGAARD 1966) est un langage classique dérivé de l'ALGOL 60, qui intègre les notions de classe, d'héritage qui seront repris par ses successeurs. Langage avant tout créé pour des simu​lations, il intègre également des notions temps réels qui ont peut-être ins​piré ADA.

5.3 SMALLTALK la référence

SMALLTALK 80 reste le plus complet des langages objet. C'est à la fois, un concept, une conception, un langage, un système d'exploitation, un inté​grateur graphique développé par un groupe de recherche XEROX.

L'environnement est multifenêtré et multitâches. L'utilisateur peut ouvrir des fenêtres de travail (browser), pour exécuter ses applications. Il dispose de l'ensemble du source des objets du système et des applications, et d'outils pour les éditer et les débugguer.

On peut considérer SMALLTALK comme une base de données d'objets.

Considérons les principaux concepts du langage :

SYMBOL 183 \f "Symbol" \s 12 \h
Modularité : Aucun composant ne dépend des détails internes d'un autre composant.

SYMBOL 183 \f "Symbol" \s 12 \h
Masquage des informations et encapsulation : La structure interne des objets est cachée, et manipulée seulement par les méthodes internes.

SYMBOL 183 \f "Symbol" \s 12 \h
Héritage : Une classe d'objets spécifiques peut héri​ter des pro​priétés d'objets plus généraux. Ainsi si un message n'est pas traité locale​ment, la méthode de la classe parent est utilisée.

SYMBOL 183 \f "Symbol" \s 12 \h
Banalisation des objets : Les classes sont elle-mêmes des objets appartenant à la méta-classe.

SYMBOL 183 \f "Symbol" \s 12 \h
Polymorphisme

SYMBOL 183 \f "Symbol" \s 12 \h
Sélection dynamique des méthodes : Ceci permet de dé​crire des objets de haut niveau, tableaux, listes, indépendam​ment du type d'objet élémentaire.

Cette souplesse se paye au prix d'une relative ineffi​cacité et d'un faible niveau de protection. L'utilisation d'algorithmes plus performants, et une compilation préalable pour optimiser les relations statiques, permettent des perfor​mances comparables à celles obtenues par les compilateurs.

Le concept d'héritage enrichit la phase d'identification des objets d'une autre préoccupation : celle d'établir des filiations entre les classes d'objets, d'identifier des objets parents.

Ainsi aucun traitement ne doit être dupliqué en SMALLTALK. Si deux objets nécessitent un traitement similaire, ils partagent donc un concept qui doit donner naissance à une classe dont tous deux pourront en hériter les propriétés. Ceci permet d'obtenir des taux de réutilisation et donc de compression assez spectaculaires (dix à quinze en nombre de lignes par rapport aux langages classiques)

5.4 EIFFEL un autre langage objet

EIFFEL, d'une syntaxe plus familière que celle de SMALLTALK comporte des notions de mécanismes de défense optionnels. Pour des raisons de por​tabilité, le compilateur génère un source C, mais n'est en aucun cas influencé par ce langage, c'est pourquoi il est classé dans les langages ori​ginaux.

5.5 Les langages dérivés de LISP

LISP étant très utilisé dans le domaine de l'intelligence artificielle, plusieurs langages sont nés en intégrant les notions d'objets en extension du langage LISP. C'est le cas des langages LOOP, FLAVORS (MIT), CEYX (INRIA).

5.6 Les langages dérivés de C et PASCAL

Certains ont tenté d'utiliser les langages classiques comme PASCAL, C (K.Dutta). J'ai moi-même essayé de créer quelques objets en PASCAL. C'est tout à fait possible avec un peu de discipline, mais l'écriture n'est pas très naturelle.

Par contre des extensions des langages C ou PASCAL ont permis d'allier la puissance du concept objet avec l'efficacité des compilateurs, c'est le cas d'OBJECT PASCAL (PASCAL), DE TURBO-PASCAL, OBJECTIVE C (C), C++ (C). OBJECTIVE C s'appuie sur SMALLTALK pour les déclarations de classe, tandis que la syntaxe de C++ dérive complètement de celle du C.

OBJECTIVE C a été retenu par la machine mythique NEXT. C++ a été retenu comme successeur de C pour écrire les prochaines versions d'UNIX.

Ces langages sont en majorité moins puissants que SMALLTALK, mais on peut encore les considérer comme des langages objets. Ils sont souvent implantés sous forme d'un pré-processeur qui gé​nère un source compilable par le langage d'origine.

Le choix de la grosse majorité des fabricants s'est porté sur C++, candidat à la normalisation ANSI. La dernière version (2.1) est plus puissante que SMALLTALK et la prochaine devrait combler certaines de ses lacunes par rapport à ADA (généricité et exceptions).

Ses avantages sont :

SYMBOL 183 \f "Symbol" \s 12 \h
Une compatibilité quasi-totale avec le C ANSI,

SYMBOL 183 \f "Symbol" \s 12 \h
Tous les mécanismes objets : définition de classe, héritage multiple, surcharge, redéfinition des opérateurs...

SYMBOL 183 \f "Symbol" \s 12 \h
L'interoperabilité avec le C,

SYMBOL 183 \f "Symbol" \s 12 \h
Son faible prix.

C++ existe sur SUN, sur PC (Zortek/BORLAND/MICROSOFT-C++), en chaîne croisée (préprocesseur MICROTEC), etc

Il connaît surtout un gros succès pour la programmation des interfaces graphiques XWINDOW, MOTIF, OPENLOOK, et à présent WINDOWS sur PC.

Turbo-PASCAL comporte des qualités objets presque aussi bonnes, son seul défaut étant une définition propriétaire BORLAND du langage et donc une portabilité nulle.

SYMBOL 183 \f "Symbol" \s 12 \h
Généricité : Elle permet d'écrire des méta classes permettant d'obtenir des services sans pour autant adhérer aux principes qu'exige l'héritage. Ainsi il est possible d'écrire une classe de tri qui peut travailler sur des classes dérivés de l'objet de base. La généricité permet d'écrire la même classe sans exiger qu'elle dérive d'une classe de base.

SYMBOL 183 \f "Symbol" \s 12 \h
Surcharge : Ceci permet de déclarer par le même nom deux fonc​tions dont la nature des arguments diffère, pour déclarer plusieurs méthodes traitant le même type de mes​sage avec des arguments différents.

6. METHODES ET OUTILS

6.1 LA CONCEPTION INCREMENTALE

Les premiers langages véritablement orientés objets utilisaient une démarche incrémentale de développement, sans véritable phase de conception préalable.

Le système d'exploitation de smalltalk permet d'accéder à la base d'objets, de modifier ou d'ajouter une classe.

Généralement une nouvelle application ne nécessite que quelques objets supplémentaires. Ce processus s'appelle la conception incrémentale. Il n'y a pas vraiment d'outil de conception même si le système est souvent enrichi par des vues graphiques permettant de comprendre les relations inter-objets, et de naviguer parmi eux.

6.2 La méthode OOSD

L'engouement actuel pour des langages réellement objets mais pour des applications industrielles a provoqué la sortie des premiers outils de conception réellement objet.

L'outil de génie logiciel Stp propose un outil supportant OOSD, méthode dérivée de Structured Design dont elle applique le formalisme dans un contexte objet.

Elle comporte tous les mécanismes objets :

SYMBOL 183 \f "Symbol" \s 12 \h
classe

SYMBOL 183 \f "Symbol" \s 12 \h
héritage multiple,

et ADA :

SYMBOL 183 \f "Symbol" \s 12 \h
généricité,

SYMBOL 183 \f "Symbol" \s 12 \h
temps réel ADA,

SYMBOL 183 \f "Symbol" \s 12 \h
exceptions,

SYMBOL 183 \f "Symbol" \s 12 \h
lien dynamique.

L'outil est configurable afin de pouvoir masquer les concepts qui ne sont pas supportés par le langage. (ex généricité en C++, héritage en ADA)

On distingue deux types de schémas :

SYMBOL 183 \f "Symbol" \s 12 \h
les schémas de définition, dans lesquels toutes les opérations disponibles sur l'objet sont visualisées avec sa structure internes et les ressources externes utilisées,

SYMBOL 183 \f "Symbol" \s 12 \h
Les schémas d'utilisation dans lesquels on voit l'ensemble des objets d'un niveau de l'application, et seulement les opérations réellement utilisées.

Ceci permet de distinguer la vue "application", assimilable à notre phase de conception préliminaire, de la vue "structure interne de l'objet" assimilable à notre conception détaillée.

6.3 LES METHODES OOA/OOD SHLAER & MELLOR

La méthode OOA comporte 3 modèles principaux :

· Modèle d'information : attribut des classe et liens entre classes

· Modèle dynamique : automate par objet

· Modèle fonctionnel : proche de SA

plus d'autres :

· Modèle de décomposition en domaines (sous-systèmes ?)

· Modèle de communication entre objets

· Modèle d'accès entre classes (dépendances ?)

et un langage PDL pour décrire les actions.

La méthode OOD comporte en outre :

· Le diagramme de classe : vue externe d'une classe

· Le diagramme d'architecture de classe : diagramme SD des fonctions de la classe

· Le diagramme de dépendance : diagramme de visibilité entre classes

· Le diagramme d'héritage : diagramme hierarchique

Les outils disponibles sur ces méthodes sont les suivants :

· GraphTalk OOA/OOD disponible sur P.C. et station.

· SES Ojectbench avec une fonction de simulation du modèle.

· TEAMWORK OOA

6.4 LA METHODE OMT

La méthode Object Modeling Technique du Dr Rumbaugh (General Electric) est inspirée de OOA mais l'applique également en conception et prévoit 3 modèles principaux :

· Un modèle objet traduisant les liens physiques entre classes avec des symboles

· d'association hérités des relations de CHEN

· d'aggrégation (composition physique ?)

· d'héritage

· Un modèle dynamique avec des automates et des sous automates

· Un modèle fonctionnel très semblable à SA.

et deux autres surtout utilisés en spécification :

· Diagrammes d'instance. Liens entre objet et non entre classes.

· Scénarios traces d'événements entre objets

La méthode prévoit des indications de génération de code et de vérification entre modèles.

Les outils disponibles sont les suivants :

· OMTool et OMT Select : outils souples sur P.C.

· GraphTalk OMT : outil disponible sur station et P.C.

· OMT/STP : outil sur station

· LOV/OMT : outil français sur station

· OMT PARADIGME : outil sur P.C. et station acheté par CADRE (TEAMWORK)

6.4.1 LE MODELE OBJETS

Une classe est définie par son nom, des attributs et des méthodes.

Le diagramme objet des liens entre classes peut être précédé en analyse par un diagramme d'instances, montrant les liens entre objets (avant identification des classes)

Des liens d'association similaires aux relations de CHEN peuvent relier les classes :

Relation 1:1

Relation 1ou 0 : 1

Relation N:1

Lorsqu'une classe est composée d'autres classes, il y a aggrégation.

On y trouve également des liens d'héritage spécifiques de l'orientation objet

6.4.2 MODELE DYNAMIQUE

Le modèle dynamique est un automate de type Harel. Un état peut comporter un sous-automate.

Le comportement de l'application peut être pré-modélisé en analyse par

· Des scénarios de succession d'événement entre objets (event trace)

· event-flow : diagramme avec tous les événements entre objets (instance)

· class event-flow : diagramme avec tous les événements entre classes d'objets.

6.4.3 Le modèle fonctionnel

Le modèle fonctionnel est hérité de SA (bulles, flots, réservoirs)

6.4.4 Exemple de génération de code

La génération de code ne semble porter que sur le modèle objet.

Sous l'outil OMTool, le schéma présenté donne lieu à la génération de code :

// DECLARATIONS FOR OMT MODULE atm

#ifndef _atm_H

#define _atm_H 1

class Transaction

{

 protected:

 void* date_time;

 Entry_Station* ptrEntry_Station;

 Set<Update*> ptrUpdate;

};

class Update

{

 protected:

 void* amount;

 void* kind;

 Transaction* ptrTransaction;

 Account* ptrAccount;

};

class Consortium

// SYNOPSIS

// An organization of banks that commissions and operates

// the ATM network. The network only handles transactions

// for banks in the consortium.

{

 protected:

 Dict<void*,Bank*> ptrBank;

 Dict<void*,ATM*> ptrATM;

};

Cette génération nécessitera l'entrée sous l'outil des informations non graphiques :

· Types

· Argument des fonctions

· Certains qualifieurs (dérivation publique ou privée...)

La génération de code est paramétrée par les noms des rubriques des informations non graphique, ex :

$type $role

Les associations et aggrégats sont gérés par défaut par des pointeurs.

Les relations "plusieurs" sont gérées par défaut par des classes génériques Set,List,Dict.
6.5 LA METHODE CLASSE RELATION

La méthode classe relation est une méthode française inspirée d'OMT et de OOA/SHLAER & MELLOR. Elle n'est actuellement supportée que par un seul outil OBJECTEERING de SOFTEAM.

Par rapport à OMT, l'outil contraint la méthode. Elle comporte également une génération de code sur une partie des automates.

6.6 LA METHODE BOOCH

Père fondateur des méthodes orientée objets qui ont suivies la génèse du langage ADA, Booch, participant à l'outil ROSE de la société RATIONNAL supportant sa méthode, s'est ré-orienté à présent vers le C++. Sa méthode prétend traiter les deux langages mais tous les exemples de ses livres didactiques sont à présent en C++.

6.6.1 Diagrammes de classe

Ce type de diagramme donne la vue logique du système.

6.6.2 SPECIFICATION

Une spécification est la fiche textuelle décrivant les entité classes, catégories, attributs,...

6.6.3 DIAGRAMMES DE TRANSITION D'ETATS

L'automate utilisé par booch est un automate de type harel avec :

· des conditions de transition

· des actions sur l'entrée dans un état

· des actions sur la sortie d'un état

· des sous-automates dans les états

mais sans les états concurents.

6.6.4 DIAGRAMMES D'OBJETS

Les diagrammes objets sont utilisées en analyse lorsque les classes ne sont pas encore identifiées. Le symbolisme pour les objets est le même que celui des classes.

Un scénario peut y figurer en indiquant une suite de messages ordonnés par le préfixe N. Il peut aussi comporter des rôles, des clés et des contraintes.

6.6.5 DIAGRAMME D'INTERACTIONS

Semblables aux scénarios d'OMT, ils peuvent être utilisés en spécification pour donner des scénarios de messages entre objets dans un diagramme type chronogramme.

6.6.6 DIAGRAMMES DE MODULE

On retrouve ici l'icônographie utilisée par la première version de la méthode BOOCH pour le langage ADA. Il s'agit du diagramme de visibilité, avec la distinction visibilité du corps ou de l'interface.

6.6.7 DIAGRAMMES DE SOUS-SYSTEME

Ces diagrammes donnant les relations entre aggloméras de modules était aussi évoquée lors de la première version de la méthode de BOOCH pour ADA.

6.6.8 DIAGRAMMES DE PROCESSUS

Ce type de diagramme utilise des cubes, représentatifs des processeurs et périphériques. Chaque cube processeur donne la liste des processus attributés.

7. COMPARATIF et CONCLUSION

La comparaison entre la décomposition fonctionnelle et la décomposition en objet, montre que les objets sont plus facilement réutilisables que les fonctions.

Par définition les objets concentrant les définitions de données et toutes les fonctions nécessaires sur ces données, ils sont plus indépendants avec une forte cohésion interne et un faible couplage externe.

Cette autonomie facilite également la compréhensibilité et la composabi​lité. La décomposabilité est également assurée puisque la démarche est globalement descendante surtout pour les méthodes destinées à être utilisées avec ADA.

Ils bénéficient généralement d'une bonne protection modulaire, celle-ci étant assurée à l'intérieur de l'objet, aucune pollution extérieure n'étant possible.

Quelques essais ont permis de dégager certaines restrictions :

SYMBOL 183 \f "Symbol" \s 12 \h
La réutilisabilité fait apparaître plus de composants qu'une conception classique (certains objets locaux peuvent être rendus publiques), compliquant les diagrammes,

SYMBOL 183 \f "Symbol" \s 12 \h
Les mécanismes d'héritage (C++) sont très puissants mais il devient parfois difficile d'appréhender les "liens familiaux" et les propriétés héritées.

L'émergeance récente de méthodes et d'outils supportant les concepts objets devrait faciliter l'usage de l'orienté objets.

8. ANNEXES

8.1 Bibliographie

· Conception orientée objet : Cours IGL v01

· Conception et programmation par objets par Bertrand Meyer Sémi​naire Janvier 89

· Object oriented Software Construction par Bertrand Meyer édi​tions Prentice hall

· Ingénierie du logiciel avec ADA par Grady Booch

· Software component with ADA par Grady Booch

· Objet Oriented Computing IEEE (Tomes 1 et 2)

· The C++ programming language par Bjarne STROUSTRUP

· Concepts of Object Oriented Structured Design, A.L. WASSERMAN P A PIRCHER RJ MULLER Interactive Development Environments Inc

· The Object Oriented Structured Design Notation for Software Design Representation A.L. WASSERMAN P A PIRCHER RJ MULLER

· Object lifecycles Modeling the world in states, Sally Shlaer / Stephen J. Mellor, YOURDON PRESS COMPUTING SERIES

· Object-oriented modeling and design, James Rumbaugh, PRENTICE HALL INTERNATIONAL EDITIONS

· Ingénierie des objets - approche classe-relation application à C++, P.Desfray, MASSON

· Analyse & conception orientées objets - Grady BOOCH, Addison Wesley

attribut 1

attribut 2

attribut N

NOM_CLASSE

méthode 1

méthode 2

méthode N

_885212693.doc
���

Note

Clef {contrainte }

N

Classe incluse par référence

Classe incluse par valeur

Abstraite

A

Virtuel

Statique

Friend

V

S

F

Classe 2

Classe 1

Catégorie de classes

Accès protégé

Accès privé

Accès de mise en oeuvre

Classe imbriquée

Méthode()

Attribut

Classe

paramètre réel

Classe paramétrée

paramètre formel

héritage

Méthode()

Attribut

Classe père

association

Méthode()

Attribut

Classe

1

N

1

1

relation a ..

relation utilise

Méthode()

Attribut

Classe

Méthode()

Attribut

Classe

_885381164.doc
��������������������

P

Objet fournisseur est local à l'objet client

Objet fournisseur partiede l'objet client

Paramètre

Visibilité globale

L

F

P

G

N:Message()

Attributs

Objet

Attributs

Objet

