Conception orientée objets

Conception orientée objets

la

CONCEPTION
ORIENTEE OBJETS

ADA

2.4 10/93

.Début Table M.

S O M M A I R E

1I.
INTRODUCTION

II.
PROBLEME DU LOGICIEL
2
III.
LES FACTEURS DE QUALITE
3
IV.
PRINCIPES DE LA CONCEPTION ORIENTEE OBJETS ADA
4
A.
Structure d'un programme objet
4
1.
Les classes d'objets
5
2.
L'objet
5
3.
Les messages
5
B.
Structure d'un objet
5
1.
Les attributs
6
2.
Les méthodes
6
C.
CONCEPTS OBJETS CHEZ LES langages intermédiaires MODULA II et ADA
6
D.
Conception
7
1.
Identifier les objets
8
2.
Identifier les messages
8
3.
Etablir la visibilité
8
4.
Etablir les interfaces
8
5.
Réaliser les objets
9
E.
Liaison entre la spécification et la conception
9
1.
Spécification textuelle
9
2.
Spécification SADT
9
3.
Spécification SART
9
4.
Spécification par modèle entité/association
9
5.
Spécification orientée objets
9
V.
La CONCEPTION ORIENTEE OBJET
10
A.
LA CONCEPTION ORIENTEE ADA
10
1.
La méthode de BOOCH
10
2.
La méthode de BUHR
15
3.
La méthode HOOD
16
4.
La méthode MACH 2
17
B.
APPLICATION
17
1.
CONCEPTION ENCAPSULEE
17
2.
L'OUTIL DE CONCEPTION CARDTOOLS
17
3.
L'OUTIL DE SPECIFICATION OOA DE TEAMWORK
18
4.
ADA
18
5.
C++
18
VI.
COMPARATIF et CONCLUSION
19
VII.
ANNEXES
21
A.
Bibliographie
21
B.
Figures
21
C.
Exemple
1
1.
La spécification
1
2.
L'identification des objets
2
3.
Opérations reçus ou utilisés par les objets
2
4.
Etablir la visibilité entre les objets
3
5.
Etablir l'interface des messages
3
6.
Implémentation
4

I. INTRODUCTION

L' objet est le maître mot ac​tuel. L' architecture structurée vient à peine de rallier les derniers irréductibles que déjà un autre concept étrange vient lui contester sa suprématie.

Mais ces deux méthodes sont-elles réellement en opposition ? Les objets représentent-ils une mode ou offrent-ils de réels avantages ? Sont-ils applicable au domaine temps réel ?

Pour répondre à ces questions, nous adopterons la démarche suivante:

SYMBOL 183 \f "Symbol" \s 12 \h
Analyse du problème actuel.

SYMBOL 183 \f "Symbol" \s 12 \h
Définition des critères recherchés.

SYMBOL 183 \f "Symbol" \s 12 \h
Présentation de la démarche proposée par cette mé​thode.

SYMBOL 183 \f "Symbol" \s 12 \h
Comparaison entre les méthodes et satisfaction aux critères définis.

II. PROBLEME DU LOGICIEL

Les problèmes existent depuis longtemps :

SYMBOL 183 \f "Symbol" \s 12 \h
Inadéquation : Le logiciel ne répond pas aux besoins, soit parce que ceux-ci sont mal définis, soit parce que la réa​lisation n'est pas conforme.

SYMBOL 183 \f "Symbol" \s 12 \h
Manque de Fiabilité : Le logiciel tombe souvent en panne.

Ce qui amplifie encore les faiblesses dans le domaine de :

SYMBOL 183 \f "Symbol" \s 12 \h
La modifiabilité, et l'extensibilité : Une petite correction ou ex​tension entraîne une importante modification.

SYMBOL 183 \f "Symbol" \s 12 \h
La maintenance.

Tout ceci avec une exploitation souvent incomplète des ressources de développement, et donc un manque de maîtrise des coûts et des délais.

Ajoutons que

SYMBOL 183 \f "Symbol" \s 12 \h
le faible coefficient de réutilisation,

SYMBOL 183 \f "Symbol" \s 12 \h
la difficulté des portages, (multiplicité des langages)

rendent cet investissement peu récupérable.

Mais avec l'inversion de l'importance relative des coûts de développe​ment matériel/logiciel dans un système, le problème est devenu économique et les efforts se sont multi​pliés :

SYMBOL 183 \f "Symbol" \s 12 \h
Formalisation des procédures de définition (adéqua​tion).

SYMBOL 183 \f "Symbol" \s 12 \h
Formalisation des procédures de développement (maî​trise des coûts, des délais, gestion des ressources)

SYMBOL 183 \f "Symbol" \s 12 \h
Définition pour les besoins de la défense américaine d'un lan​gage unique ADA (réutilisabilité).

SYMBOL 183 \f "Symbol" \s 12 \h
Méthodes de conception réduisant les défauts cités.

SYMBOL 183 \f "Symbol" \s 12 \h
Définition d'extension de langages classiques.

III. LES FACTEURS DE QUALITE

Définition des facteurs recherchés:

SYMBOL 183 \f "Symbol" \s 12 \h
MODIFIABILITE : Facilité avec laquelle le système peut être adapté lors de modifications des spécifications.

SYMBOL 183 \f "Symbol" \s 12 \h
EXTENSIBILITE : Facilité avec laquelle le logiciel peut être adapté lors d'une extension des spécifications.

SYMBOL 183 \f "Symbol" \s 12 \h
MAINTENABILITE : Facilité avec laquelle on détecte, localise et corrige les anomalies du logiciel.

SYMBOL 183 \f "Symbol" \s 12 \h
FIABILITE : Aptitude d'un logiciel à accomplir sans défaillance chaque fonction spécifiée, dans des conditions d'utilisations données pendant un temps déterminé.

SYMBOL 183 \f "Symbol" \s 12 \h
ROBUSTESSE : Aptitude d'un logiciel à maîtriser les conditions anormales de fonctionnement, à limiter les défauts à la partie concernée sans perturber les autres fonctions

SYMBOL 183 \f "Symbol" \s 12 \h
REUTILISABILITE : Aptitude du logiciel à être réuti​lisé, en tout ou en partie, dans d'autres applications.

SYMBOL 183 \f "Symbol" \s 12 \h
TESTABILITE : Facilite avec laquelle le logiciel peut être testé.

Définition des propriétés pouvant favoriser ces fac​teurs :

SYMBOL 183 \f "Symbol" \s 12 \h
FAIBLE COUPLAGE : Nombre faible d'interconnexions entre les modules.

SYMBOL 183 \f "Symbol" \s 12 \h
FORTE COHESION : Nombre important d'interconnexions entre les éléments d'un module.

SYMBOL 183 \f "Symbol" \s 12 \h
BONNE DECOMPOSABILITE : Facilité à décomposer les éléments complexes en composants pour diviser le travail.

SYMBOL 183 \f "Symbol" \s 12 \h
BONNE COMPOSABILITE : Facilité de combinaison des mo​dules à se combiner différemment dans la création d'autres sys​tèmes.

SYMBOL 183 \f "Symbol" \s 12 \h
BONNE COMPREHENSIBILITE : Compréhension des modules indé​pendamment de leur environnement

SYMBOL 183 \f "Symbol" \s 12 \h
CONTINUITE MODULAIRE : Un petit changement des spéci​fications n'entraîne qu'un petit changement de l'architecture du logiciel.

SYMBOL 183 \f "Symbol" \s 12 \h
PROTECTION MODULAIRE : L'effet d'une erreur (excep​tion) est limité au module ou elle est soulevée.

IV. PRINCIPES DE LA CONCEPTION ORIENTEE OBJETS ADA

L' effort de formalisation des phases du cycle de développement conduit les concepteurs de méthodes à proposer des modèles de représenta​tion. Ces modèles combinent trois axes principaux d'analyse : l'axe fonction​nel, l'axe dynamique et l'axe des données auquel il faut ajouter l'axe archi​tecture physique en phase de conception.

Le modèle structuré privilégie l'axe fonctionnel tandis que le modèle objet unifie les axes fonctionnels et données. Ces modèles sont applicables avec quelques adaptations aux phases de spécification ou conception. En effet la spécification vise la description non ambiguë de ce que fait un système (le quoi), tandis que la conception vise la description de la réalisa​tion du système (le comment), mais toutes deux peuvent utiliser le modèle objet pour cette description.

Le concept objet que nous allons présenter est dont également utilisé en spécification orientée objets, mais avec une démarche bien sûr différente.

Le langage ADA dans sa définition de 83 n'incorpore qu'un sous-ensemble des mécanismes de l'orienté objet, aussi ne présenterons nous que ceux supportés par le langage.

A. Structure d'un programme objet

Un programme objet est constitué d' objets qui interagissent entre eux, par l'échange de mes​sages.

1. Les classes d'objets

Les classes définissent un type d'objet. L'utilisateur a la connaissance du nom de l'objet et des messages qu'il peut lui envoyer.

2. L'objet

Chaque objet est obtenu par instanciation de la classe, tout comme on déclare une variable d'un certain type, et il est accessible par son nom. Mais un objet est autonome, il gère sa structure interne de données dont l'utilisateur n'a pas connais​sance, et le traitement des messages qu'il reçoit.

3. Les messages

Les objets communiquent entre eux par des messages. Un objet en​voyant un message indique l'objet destinataire, le sé​lecteur (nom du mes​sage) et les arguments du message.

B. Structure d'un objet

Un objet est défini extérieurement (interface) par son nom et sa classe et les messages qu'il peut recevoir (la classe peut contenir un seul objet)

La structure interne de l'objet non visible de l'extérieur comprend :

1. Les attributs

Les attributs sont des données permettant de modéliser un objet. Par exemple, la couleur et la cylindrée pour une voi​ture.

2. Les méthodes

Les méthodes sont les sous-programmes qui vont traiter les messages. Il peut y avoir plusieurs méthodes par message, chacune traitant une confi​guration particulière d'arguments.

C. CONCEPTS OBJETS CHEZ LES langages intermédiaires MODULA II et ADA

Deux langages présentent suffisamment de struc​tures natives pour permettre le codage d'une conception orien​tée objet sans extension et sans trop de difficultés.

Il s'agit de MODULA II (Niklaus Wirth 1978) et ADA (DoD). En raison de l'importance du langage ADA, la démarche conception orientée objets a été revue dans le cadre de ce lan​gage.

Voyons les structures du langage ADA permettant de sup​porter certains des concepts objets :

SYMBOL 183 \f "Symbol" \s 12 \h
Paquetage : Le paquetage est un module donnant accès à une collec​tion de données et de sous-programmes. Il possède une interface visible de l'extérieur et un corps caché. Un paquetage avec la définition d'un type d'objet et l'ensemble des procé​dures et fonctions sur ce type correspondra à la classe et ses méthodes.

SYMBOL 183 \f "Symbol" \s 12 \h
Types privés : L'utilisateur connaît le nom du type privé, peut dé​clarer des variables de ce type, les passer en argument, mais ne connaît pas la structure interne de ce type. Ceci permettra de cacher les attributs de l'objet.

SYMBOL 183 \f "Symbol" \s 12 \h
Types dérivés : L'héritage est assez difficile à im​planter en ADA, on peut faire dériver un type d'un type pri​maire, et en hériter des fonctions, mais cela oblige à démas​quer le type primaire ce qui va à l'encontre de l'objectif de masquage des informations.

SYMBOL 183 \f "Symbol" \s 12 \h
Généricité : La sélection dynamique des messages n'est pas directe​ment disponible, mais il est possible de décrire des paquetages génériques, qui sont paramètrés par des types de données et des opérations. On peut par exemple décrire un algo​rithme de tri, indépendamment du type d'objet trier, et obtenir des copies pour chaque type d'objet ou critère de tri, ce qui répond partiellement aux objectifs de la sélection dynamique

SYMBOL 183 \f "Symbol" \s 12 \h
Surcharge : Ceci permet de déclarer par le même nom deux fonc​tions dont la nature des arguments diffère, pour déclarer plusieurs méthodes traitant le même type de mes​sage avec des arguments différents.

Mais on ne trouve pas :

SYMBOL 183 \f "Symbol" \s 12 \h
l'héritage,

SYMBOL 183 \f "Symbol" \s 12 \h
le polymorphisme,

ce qui fait que le langage n'est pas réellement objet, même si une conception orientée objets lui est adaptée.

D. Conception

La démarche de conception comprend cinq étapes :

1. Identifier les objets

Il faut identifier les objets et leurs attributs. Pour cela choisir les objets du monde réel à travers l'analyse des spécifications.

Il ne s'agit pas de réaliser un modèle exhaustif de la réalité mais d'en faire une abstraction pour le domaine d'utilisation souhaité. Par exemple, les attributs position du volant et vitesse engagée d'une voiture sont de bons attributs pour un système de conduite, et kilométrage et niveau d'huile pour un système d'entretien.

On définira les valeurs associées des attributs. (Ex: état marche/arrêt).

Les objets peuvent ensuite être groupés en classes d'objets. On peut aussi regrouper les affinités pour donner naissance à des objets plus généraux. (Ex la classe des polygones pour la classe des rectangles)

2. Identifier les messages

Cette phase consiste à établir deux listes construites plus ou moins en parallèle.

a) Identifier les messages reçus

Ce sont les opérations sur les objets qui seront réali​sés lors de l'implémentation. On considère trois types de messages :

SYMBOL 183 \f "Symbol" \s 12 \h
Les constructeurs : l'appel d'un constructeur peut modifier l'état de l'objet.

SYMBOL 183 \f "Symbol" \s 12 \h
Les sélecteurs : ils permettent d'obtenir des informations sur l'état de l'objet mais ne modifient pas son état.

SYMBOL 183 \f "Symbol" \s 12 \h
Les itérateurs : permettent de visiter l'ensemble des objets d'une classe, par exemple pour imprimer tous les objets d'un arbre, ou pour effectuer une recherche.

b) Identifier les messages émis

Ce sont les opérations utilisées sur les autres objets. Cette liste sert surtout à compléter la première et donne une première idée des liens entre objets.

3. Etablir la visibilité

Il faut établir les relations de visibilité entre les objets. Un objet qui envoie des messages à un autre objet a vue sur lui.

4. Etablir les interfaces

Il faut ici définir les différentes combinaisons pos​sibles d'arguments pour chaque message traité par un objet.

Chaque combinaison correspondra à la définition de l'interface de la méthode traitant ce type d'appel.

5. Réaliser les objets

Cette phase correspond à la réalisation de chaque objet (conception détaillée + codage)

E. Liaison entre la spécification et la conception

En fonction du type de spécification, il existe quelques règles de bon sens facilitant l'application de la dé​marche.

1. Spécification textuelle

Il faut d'abord lire la spécification en établissant des listes. Les noms correspondent généralement à des objets, les verbes à des messages, les adjectifs à des attributs ou des valeurs d'attribut.

Eliminer ensuite les synonymes, les objets en dehors du système à concevoir. Une fois ce premier niveau de formalisa​tion, le reste de la dé​marche est identique.

2. Spécification SADT

Les flots de données d'entrée ou de sortie sont souvent des objets, les données de contrôle également à l'exception des déclencheurs. Les méca​nismes ne sont généralement pas de bons objets. Les boites des datagrammes correspondent très souvent à des objets. Les boîtes des actigrammes constituent les messages.

3. Spécification SART

Les flots de données et les réservoirs d'information sont souvent des objets ou des attributs d'objet.

Les processus fonctionnels (bulles) et les flots de contrôle des mes​sages. La CSPEC décrit le fonctionnement dyna​mique d'un objet en fonction des messages.

4. Spécification par modèle entité/association

Ce modèle de spécification est orienté données, Les en​tités correspon​dent donc à des objets, et les attributs des en​tités aux attributs des objets.

Les associations correspondent en majorité à des mes​sages si elles peuvent être intégrées aux entités, parfois à des objets si elles recèlent des informations non reliables aux objets.

5. Spécification orientée objets

Certaines méthodes de spécification orientée objet commencent à émerger. L'outil de spécification SA/RT TEAMWORK propose de réaliser avec les mêmes outils une spécification orientée objets, mais il est encore trop tôt pour en évaluer l'impact.

V. La CONCEPTION ORIENTEE OBJET

A. LA CONCEPTION ORIENTEE ADA

Les premières méthodes et outils de conception sont apparus pour ADA et sont avant tout des méthodes de conception modulaire. Les mécanismes d'héritage ne sont pas pris en compte, parfois même la généricité est ignorée.

Ces différentes méthodes utilisent toujours la même dé​marche (identification des objets, des opérations, visibilité, interface et codage).

1. La méthode de BOOCH

Booch définit d'abord des symboles graphiques pour chaque unité du langage ADA :

SYMBOL 183 \f "Symbol" \s 12 \h
les sous-programmes.

SYMBOL 183 \f "Symbol" \s 12 \h
les paquetages.

SYMBOL 183 \f "Symbol" \s 12 \h
les tâches.

Ces mêmes symboles grisés concernent le corps de l'unité, non visible des autres unités, sinon ils concernent la spécification. Les sous-programmes et paquetages génériques sont tracés en pointillé.

BOOCH a étudié le problème de la réutilisabilité et propose une biblio​thèque d'objets et utilitaires classiques. Il n'y en a pas une infinité et il en propose un classement systématique :

SYMBOL 168 \f "Symbol" \s 12 \h
STRUCTURES

SYMBOL 183 \f "Symbol" \s 14 \h
MONOLITHIQUES

SYMBOL 183 \f "Symbol" \s 5 \h
piles

SYMBOL 183 \f "Symbol" \s 5 \h
chaînes

SYMBOL 183 \f "Symbol" \s 5 \h
files

SYMBOL 183 \f "Symbol" \s 5 \h
files doubles

SYMBOL 183 \f "Symbol" \s 5 \h
anneaux

SYMBOL 183 \f "Symbol" \s 5 \h
carte (map)

SYMBOL 183 \f "Symbol" \s 5 \h
ensembles

SYMBOL 183 \f "Symbol" \s 5 \h
groupes (bags)

SYMBOL 183 \f "Symbol" \s 14 \h
COMPOSITES

SYMBOL 183 \f "Symbol" \s 5 \h
listes

SYMBOL 183 \f "Symbol" \s 5 \h
arbres

SYMBOL 183 \f "Symbol" \s 5 \h
graphes

SYMBOL 168 \f "Symbol" \s 12 \h
OUTILS

SYMBOL 183 \f "Symbol" \s 5 \h
utilitaires

SYMBOL 183 \f "Symbol" \s 5 \h
filtres

SYMBOL 183 \f "Symbol" \s 5 \h
pipes

SYMBOL 183 \f "Symbol" \s 5 \h
tri

SYMBOL 183 \f "Symbol" \s 5 \h
recherche

SYMBOL 183 \f "Symbol" \s 5 \h
recherche de sous-chaine

SYMBOL 168 \f "Symbol" \s 12 \h
SOUS-SYSTEMES

Pour chaque composant il peut y avoir jusqu'à 26 versions, suivant qu'il soit

pour le multitâche :

SYMBOL 183 \f "Symbol" \s 12 \h
séquential

SYMBOL 183 \f "Symbol" \s 12 \h
garded

SYMBOL 183 \f "Symbol" \s 12 \h
concurrent

SYMBOL 183 \f "Symbol" \s 12 \h
multiple

borné ou non en nombre d'éléments,

s'il gère, contrôle ou ne contrôle pas sa mémoire

s'il comporte des itérateurs ou non.

Ceux qui ont pratiqué ce type de conception s'accordent à penser qu'une collection d'objet en relation non hiérarchique devient difficile à maîtriser à partir d'une cer​taine taille d'application (>50000 lignes ?). Toutefois, la notion de sous-système et l'aspect dynamique des objets res​tent sommaires et ont été approfondis par les méthodes ulté​rieures.

BOOCH introduit un autre symbole hors langage, de sous-système. Les cinq phases de la conception sont donc précédées de la phase 0.

a) Décomposition en sous-systèmes

Cette phase présente pour les systèmes de taille impor​tante, éventuel​lement itérative pour les très gros systèmes, consiste à décomposer le sys​tème en sous-système. Elle est as​sez proche de la technique structurée classique ou de la phase 1 d'identification des objets.

b) Identification des objets

BOOCH introduit un classement des objets en quatre types, classement qui peut être repoussé jusqu'en phase III.

SYMBOL 183 \f "Symbol" \s 12 \h
Les collections de sous-programme : Ce sont des bi​bliothèques (paquetages) de procédures et fonctions sans aucune définition de données. Ceci prouve que la conception orientée ADA peut également comporter des modules purement fonctionnels. (Exemple bibliothèque mathématique)

SYMBOL 183 \f "Symbol" \s 12 \h
Les collections de données : Ce sont des données sans aucune opération, en général des jeux de constantes (exemple PI).

SYMBOL 183 \f "Symbol" \s 12 \h
Les types abstraits de données : Ceci correspond tout à fait à la classe d'objet, avec la déclaration d'un type privé (définition des attri​buts des objets), et d'un ensemble d'opérations (procédures ou fonctions = méthodes) sur ce type. On instancie l'objet en déclarant une variable de ce type (exemple le TAD des complexes).

SYMBOL 183 \f "Symbol" \s 12 \h
Les machines à état abstrait. Lorsque le traitement d'une procé​dure (méthode) ne dépend pas seulement de la valeur des arguments mais des appels antérieurs, le paquetage doit mé​moriser ces états dans des variables cachées mais rémanentes. Ce type correspond à un seul objet implanté sous forme de pa​quetage.

SYMBOL 183 \f "Symbol" \s 12 \h
Pour chaque type d'objet (sauf les collections de sous-programme) il faut établir la définition des types et données (attributs) de l'interface et du corps du paquetage. (Visible et invisible).

Un deuxième type de classement des objets ou des sous-systèmes est possible. Un objet est

SYMBOL 183 \f "Symbol" \s 12 \h
ACTEUR s'il n'est utilisé par aucun autre objet.

SYMBOL 183 \f "Symbol" \s 12 \h
SERVEUR s'il n'utilise aucun autre objet.

SYMBOL 183 \f "Symbol" \s 12 \h
AGENT s'il utilise et est utilisé.

c) Etablir la liste des opérations.

Ceci est la liste des fonctions et procédures visibles du paquetage (liste 1) et la liste des opérations externes ap​pelées.

d) Etablir la visibilité entre les objets

Il y a deux type de visibilité :

SYMBOL 183 \f "Symbol" \s 12 \h
Interface sur interface : Vue transitive car si A voit interface B et interface B voit interface C, alors A voit C.

SYMBOL 183 \f "Symbol" \s 12 \h
corps sur interface : Vue non transitive car si A voit interface B et corps B voit interface C, alors A ne voit pas C.

Cette distinction s'établit par l'utilisation de sym​boles grisés ou non.

e) Etablir l'interface des messages

Ici se complète la déclaration de la spécification des paquetages par la déclaration des paramètres des procédures et fonctions.

f) Implémentation

Ici est réalisé le corps du paquetage.

2. La méthode de BUHR

Les formalismes de BUHR sont assez proches de ceux de BOOCH. Il manque cependant la notion de sous-système. C'est cepen​dant un formalisme très utilisé par les ou​tils de conception, notamment par TEAMWORK.

En phase transitoire un nouveau symbole (le nuage) per​met d'identifier une unité dont le type n'est pas encore choisi. BUHR vient de compléter sa définition en y ajoutant des chemins de contrôle (activation).

3. La méthode HOOD

La méthode de HOOD
 méthode inspirée de MACH (Mathis, Galinier) et OOD (Booch) est développée par CRI, CISI ingénierie et MATRA.

Principales originalités de la méthode :

SYMBOL 183 \f "Symbol" \s 12 \h
Typage du type de relation "use" ou "include" avec un forma​lisme graphique pour la relation include. Cette relation introduit un proces​sus de découpage hiérarchique des objets.

SYMBOL 183 \f "Symbol" \s 12 \h
Classement des objets en actifs (paquetage comportant des tâches) et passifs.

SYMBOL 183 \f "Symbol" \s 12 \h
La définition des objets est textuelle.

Cette méthode compte déjà plusieurs utilisateurs en FRANCE et certains outils (ex : TEAMWORK) optant pour celle-ci semble indiquer qu'elle prend l'ascendant sur les autres méthodes ADA.

4. La méthode MACH 2

Cette méthode inspirée de MACH, OOD et du langage L est proposée par IGL (THOMSON)

Principales originalités de la méthode :

SYMBOL 183 \f "Symbol" \s 12 \h
Typage des objets en sous-systèmes, processus (#objet actif), services (#machines à états abstraits) et types abs​traits de données.

SYMBOL 183 \f "Symbol" \s 12 \h
Trois bibliothèques sont définies, (TAD, générique et support) pour servir de ressource extérieure.

SYMBOL 183 \f "Symbol" \s 12 \h
Communication entre les sous-systèmes par des zones IMPORT et EXPORT.

B. APPLICATION

1. CONCEPTION ENCAPSULEE

Sans parler de conception orientée objets, une conception rendant locaux le maximum de ressources (variables, fonctions, types, etc) est à préconiser, quel que soit le langage utilisé ensuite. Des essais limités en PASCAL ou en C ont donné de bons résultats.

2. L'OUTIL DE CONCEPTION CARDTOOLS

CARDTOOLS est plus orienté conception hiérarchique structurée.

Il comporte cependant la possibilité de définir des paquetages (ensemble de fonctions/méthodes) autour d'un type privé (classe). La conception hiérarchique de l'application peut ensuite utiliser librement les services de ces paquetages/classes.

Cependant, ces paquetages sont mal exploités dans la documentation, et il n'est pas possible d'établir de vue graphique des relations de dépendance. Tant que ce problème n'est pas réglé dans les versions ultérieures, cette démarche est déconseillée.

3. L'OUTIL DE SPECIFICATION OOA DE TEAMWORK

Une autre méthode est préconisée sur un autre outil pour les spécifications orientées objets : utiliser le formalisme SA/RT.

SYMBOL 183 \f "Symbol" \s 12 \h
DFD0 Chaque bulle/processus est un objet et les flots échangés représentent des appels aux méthodes de ces objets. Il n'y a pas de diagramme de contexte.

SYMBOL 183 \f "Symbol" \s 12 \h
Chaque objet se décompose en ses méthodes (DFD) avec un automate (STD) pour décrire la dynamique interne de l'objet.

SYMBOL 183 \f "Symbol" \s 12 \h
La composition (attributs) de l'objet qui était traité par un diagramme Entité/Relation doit être décrit textuellement par une définition de type CARDTOOLS.

Cette méthode plus adaptée aux spécifications semble difficilement applicable.

4. ADA

La conception orientée objet utilisée avec prudence (utilisation partielle et progressive) peut donner d'indéniables résultats dans le contexte sécurisant du langage ADA. Il devrait devenir notre langage courant de travail.

Il est malheureusement difficile d'en chiffrer les gains à l'utilisation, même si certains experts le font, et de s'en convaincre lorsque l'on n'a pas expérimenté soi-même. Le coût initial des licences, plus élevé est un frein à sa diffusion.

Nous disponsons d'une licence méthode BUHR sous TEAMWORK.

5. C++

La méthode donne déjà de bons résultats pour des applications sur stations de travail, dont l'environnement graphique est déjà très objet.

Il est peut-être un peu trop tôt pour s'engager dans cette voie pour les applications embarquées, sauf comme substitut un peu meilleur que C.

Il serait par contre bon de se familiariser avec la technique objet dans la réalisation de petits outils.

VI. COMPARATIF et CONCLUSION

La comparaison entre la décomposition fonctionnelle et la décomposition en objet, montre que les objets sont plus facilement réutilisables que les fonctions.

Par définition les objets concentrant les définitions de données et toutes les fonctions nécessaires sur ces données, ils sont plus indépendants avec une forte cohésion interne et un faible couplage externe.

Cette autonomie facilite également la compréhensibilité et la composabi​lité. La décomposabilité est également assurée puisque la démarche est globalement descendante surtout pour les méthodes destinées à être utilisées avec ADA.

Ils bénéficient généralement d'une bonne protection modulaire, celle-ci étant assurée à l'intérieur de l'objet, aucune pollution extérieure n'étant possible.

Quelques essais ont permis de dégager certaines restrictions :

SYMBOL 183 \f "Symbol" \s 12 \h
La réutilisabilité fait apparaître plus de composants qu'une conception classique (certains objets locaux peuvent être rendus publiques), compliquant les diagrammes,

SYMBOL 183 \f "Symbol" \s 12 \h
Les mécanismes d'héritage (C++) sont très puissants mais il devient parfois difficile d'appréhender les "liens familiaux" et les propriétés héritées.

VII. ANNEXES

A. Bibliographie

Conception orientée objet : Cours IGL v01

Conception et programmation par objets par Bertrand Meyer Sémi​naire Janvier 89

Object oriented Software Construction par Bertrand Meyer édi​tions Prentice hall

Ingénierie du logiciel avec ADA par Grady Booch

Software component with ADA par Grady Booch

Objet Oriented Computing IEEE (Tomes 1 et 2)

The C++ programming language par Bjarne STROUSTRUP

Concepts of Object Oriented Structured Design, A.L. WASSERMAN P A PIRCHER RJ MULLER Interactive Development Environments Inc

The Object Oriented Structured Design Notation for Software Design Representation A.L. WASSERMAN P A PIRCHER RJ MULLER

B. Figures

C. Exemple

Le sujet de cet exemple s'inspire d'une étude menée par BOEHM-DAVIS. La solution présentée ici est assez différente de celle proposée par BOOCH dans son article Object Oriented Development paru dans IEEE.

1. La spécification

Le système à réaliser est une balise maritime. Ces balises flottent librement et produisent des informations sur la météo et le trafic naval. Elles sont équipées d'un nombre variable de capteurs, d'un voyant rouge utilisé pendant les phases de recherche, d'un récepteur radio permettant la réception de commandes en provenance des bateaux et d'un émetteur pour envoyer des rapports ou des SOS. Chaque balise est également équipée d'un émetteur-récepteur radio destiné à émettre des rapports météo ou un SOS.

Le système doit répondre aux besoins suivants :

SYMBOL 183 \f "Symbol" \s 12 \h
Calculer la moyenne courante des différents capteurs de la vitesse du vent toutes les 30 secondes.

SYMBOL 183 \f "Symbol" \s 12 \h
Calculer la moyennes courante des différents capteurs de la température de l' eau toutes les 10 secondes.

SYMBOL 183 \f "Symbol" \s 12 \h
Calculer la moyennes courante des différents capteurs de la température de l' air toutes les 10 secondes.

SYMBOL 183 \f "Symbol" \s 12 \h
Mémoriser la valeur indiquée par le capteur de position toutes les 10 secondes.

SYMBOL 183 \f "Symbol" \s 12 \h
Emettre les informations courantes toutes les 60 secondes.

SYMBOL 183 \f "Symbol" \s 12 \h
Emettre un rapport complet sur les dernières 24 heures sur la demande d'un bateau de passage.

SYMBOL 183 \f "Symbol" \s 12 \h
Allumer ou éteindre un voyant rouge sur demande d'un bateau.

SYMBOL 183 \f "Symbol" \s 12 \h
Emettre un message SOS prioritaire sur les autres types de message sur appuie du bouton d'urgence.

2. L'identification des objets

SYMBOL 183 \f "Symbol" \s 12 \h
Capteurs de vitesse du vent.

. attributs : unité en noeud, rapport d'étalonnage, adresse physique du coupleur, période d'activation.

SYMBOL 183 \f "Symbol" \s 12 \h
Capteurs de la température de l'eau.

. attributs : unité en degrés, rapport d'étalonnage, adresse physique du coupleur, période d'activation.

SYMBOL 183 \f "Symbol" \s 12 \h
Capteurs de la température de l'air.

. attributs : unité en degrés, rapport d'étalonnage, adresse physique du coupleur, période d'activation.

SYMBOL 183 \f "Symbol" \s 12 \h
Capteur de position

. attributs : unité en degrés, période d'activation.

Les capteurs sont choisis actifs, ils s'activent et écrivent cycliquement dans la base de donnée.

SYMBOL 183 \f "Symbol" \s 12 \h
base d'informations sur les dernières 24 heures.

. attributs : positions, températures, vitesses, date courante, nombre d'échantillons.

La base aura la responsabilité de rédiger le rapport envoyé toutes les 60 secondes.

SYMBOL 183 \f "Symbol" \s 12 \h
Récepteur radio

. attribut : fréquence

SYMBOL 183 \f "Symbol" \s 12 \h
Le récepteur aura la responsabilité d'exécuter les commandes reçues, gestion du voyant et rapport de 24 heures.

SYMBOL 183 \f "Symbol" \s 12 \h
Emetteur radio

. attribut : fréquence

SYMBOL 183 \f "Symbol" \s 12 \h
Voyant rouge

. attribut : allumé / éteint.

SYMBOL 183 \f "Symbol" \s 12 \h
Bouton alarme

. attribut : actif / inactif.

SYMBOL 183 \f "Symbol" \s 12 \h
Ce bouton devra lancer l'alarme.

3. Opérations reçus ou utilisés par les objets

SYMBOL 183 \f "Symbol" \s 12 \h
capteurs de vitesse du vent

utilise base.écrire.

SYMBOL 183 \f "Symbol" \s 12 \h
capteurs de la température de l'eau

utilise base.écrire.

SYMBOL 183 \f "Symbol" \s 12 \h
capteurs de la température de l'air

utilise base.écrire.

SYMBOL 183 \f "Symbol" \s 12 \h
capteur de position

utilise base.écriture.

SYMBOL 183 \f "Symbol" \s 12 \h
base d'informations sur les dernières 24 heures

reçoit écrire information, lire information.

utilise émetteur.envoyer.

SYMBOL 183 \f "Symbol" \s 12 \h
Récepteur radio :

utilise base.lire, émetteur.envoyer, voyant.allumer, voyant.éteindre

SYMBOL 183 \f "Symbol" \s 12 \h
Emetteur radio

reçoit envoyer.

SYMBOL 183 \f "Symbol" \s 12 \h
Voyant rouge

reçoit allumer, éteindre.

SYMBOL 183 \f "Symbol" \s 12 \h
Bouton alarme

utilise émetteur.envoyer

4. Etablir la visibilité entre les objets

Il est possible d'établir le classement suivant sur les objets :

SYMBOL 183 \f "Symbol" \s 12 \h
Les capteurs sont des types abstrait de données, actifs (processus), et acteurs.

SYMBOL 183 \f "Symbol" \s 12 \h
La base d'informations est une machine à états abstraits, agent et active (processus).

SYMBOL 183 \f "Symbol" \s 12 \h
Le récepteur est l'instance d'un type abstrait de données, c'est un agent, il est actif (processus).

SYMBOL 183 \f "Symbol" \s 12 \h
L'émetteur est une collection de sous-programmes, il est serveur, et c'est un objet passif.

SYMBOL 183 \f "Symbol" \s 12 \h
Le voyant est une collection de sous-programme s'il ne mémorise pas son état antérieur, et une machine à états abstraits s'il le mémorise. Il est serveur et passif.

SYMBOL 183 \f "Symbol" \s 12 \h
Le bouton alarme est un objet acteur et actif (processus).

5. Etablir l'interface des messages

SYMBOL 183 \f "Symbol" \s 12 \h
base d'informations sur les dernières 24 heures

écrire information(date,t_eau).

écrire information(date,t_air).

écrire information(date,v_air).

écrire information(date,position).

lire information(date,t_eau).

lire information(date,t_air).

lire information(date,v_air).

lire information(date,position).

SYMBOL 183 \f "Symbol" \s 12 \h
Emetteur radio

envoyer(message).

SYMBOL 183 \f "Symbol" \s 12 \h
Voyant rouge

allumer()

éteindre()

6. Implémentation

En guise de réalisation nous précisons la définition des visibilités en typant les objets au sens ADA. (diagrammes de BUHR).

Le paquetage CAPTEURS peut être réalisé en ADA en exploitant la généricité :

Dans un langage réellement orienté objet, on exploiterait plutot les mécanismes d'héritage :

� Hierarchical Object Oriented Design

� Système Analysis Real Time, méthode de spécification des logiciels temps réel

